Similarity Index

5%

28

As of: Feb 16, 2021 9:11:35 PM 42,215 words - 124 matches - 89 sources

ANALIZA, IMPLEMENTACIJA I PRIMJENA GRADIJENTNIH...

By: Stefan Vujovic

Mode: Similarity Report 🗸

paper text:

UNIVERZITET CRNE GORE ELEKTROTEHNIČKI FAKULTET Stefan Vujović

ANALIZA, IMPLEMENTACIJA I PRIMJENA GRADIJENTNIH ALGORITAMA ZA REKONSTRUKCIJU KOMPRESIVNO ODABRANIH SIGNALA

Doktorska disertacija – Podgorica, 2021. godine ANALYSIS, IMPLEMENTATION AND APPLICATIONS OF GRADIENT
 BASED ALGORITHMS FOR RECONSTRUCTION OF COMPRESSIVELY SAMPLED SIGNALS by MSc Stefan Vujović

A thesis submitted for the degree of Doctor of Philosophy Faculty of Electrical Engineering University of 1 Montenegro Podgorica 2021 PODACI O DOKTORANDU, MENTORU I ČLANOVIMA KOMISIJE DOKTORAND Ime i prezime: Datum i mjesto rod⁻enja: Naziv završenog postdiplomskog studijskog programa: Godina završetka: MENTOR: KOMISIJA ZA OCJENU PODOBNOSTI TEZE I KANDIDATA:

Stefan Vujović 4. 2. 1990. godine, Sarajevo, Bosna i Hercegovina

Elektrotehnički fakultet, odsjek Elektronika, telekomunikacije, računari, smjer Računari – magistarske 1 studije 2013. dr Miloš Daković, redovni profesor, Univerzitet Crne Gore, Elektrotehnički fakultet dr Srd⁻an Stanković, redovni profesor, Elektrotehnički fakultet, Univerzitet Crne Gore dr Miloš Daković, redovni profesor, Elektrotehnički fakultet, Univerzitet Crne Gore dr Irena Orović, redovni profesor, Elektrotehnički fakultet, Univerzitet Crne Gore

KOMISIJA ZA OCJENU DOKTORSKE DISERTACIJE: KOMISIJA ZA ODBRANU DOKTORSKE DISERTACIJE: 61 DATUM ODBRANE:

Posvećeno d⁻edu, Radomiru Muju Vujoviću Zahvalnica Najveću zahvalnost za izradu ove disertacije dugujem svom mentoru, prof. dr Milošu Dakoviću. Temeljna analiza, težnja ka suštinskom razumijevanju problema, samokritičnost i pragmatičan pristup rješavanju problema su osobine koje sam se trudio da usvojim od njega tokom svog angažovanja na Elektrotehničkom fakultetu. Stečena znanja su mi mnogo pomogla u izradi ove doktorske disertacije. Podrška, savjeti i razumijevanje na koje sam naišao tokom istraživanja i izrade ove disertacije su uvijek bili krajnje iskreni. Takod⁻e, veliki broj sati provedenih zajedno u kabinetu, laboratoriji, na ispitima i tokom putovanja su uvijek bili ispunjeni razgovorima o kvalitetnim temama. Posebno se zahvaljujem prof. dr Ljubiši Stankoviću, koji je svoj avangardni pristup naučnoj problematici nesebično dijelio sa mnom, i od samih početaka našeg zajedničkog istraživanja svojim pristupom činio da se i ja osjećam izuzetno prijatno i uvaženo kao dio tima koji se bavi svjetski priznatim istraživanja, koja su uvijek rad⁻ena u skladu sa našim maksimalnim mogućnostima. Izuzetno sam zahvalan i prof. dr Srd⁻anu Stankoviću i prof. dr Ireni Orović na kvalitetno provedenim satima u laboratoriji za multimedije, gdje se na jako prijatnim sastancima uvijek diskutovalo o aktuelnim naučnim temama, što je rezultiralo publikovanjem velikog broja naučnih radova u časopisima i na konferencijama. Zahvaljujem se i mr Nikoli Bulatoviću, dr Milošu Brajoviću, dr Filipu Radenoviću, prof. dr Slobodanu Đukanoviću, prof. dr Igoru Đuroviću, prof. dr Vesni Popović-Bugarin, prof. dr Zoranu Miljaniću, prof. dr Budimiru Lutovcu, dr Isidori Stanković, doc. dr Marku Simeunoviću i mr Predragu Rakoviću na lijepo provedenim zajedničkim trenucima na Elektrotehničkom fakultetu i van njega, kao i drugovima i drugaricama sa fakulteta: Miliću Popoviću, Milici Medenici, Sanji Zuković, Marku Bejatu, Marku Božoviću, Filipu Markoviću, Filipu Jovanoviću, Ivanu Steševiću i Miljanu Jovoviću. Podgorica, 2021. godine Stefan Vujović

PODACI O DOKTORSKOJ DISERTACIJI Naziv doktorskih studija: Doktorske studije elektrotehnike Naslov doktorske disertacije:

Analiza, implementacija i primjena gradijentnih algoritama za rekonstrukciju kompresivno odabranih signala

Ključne riječi: Gradijentni algoritmi, kompresivno odabiranje, rijetki (sparse) signali, transformacioni domeni, mjere koncentracije, impulsni šum, rekonstrukcija signala, konveksna optimizacija

Naučna oblast: Elektrotehnika, Računarstvo Uža naučna oblast: Digitalna obrada signala REZIME: U tezi su predstavljeni novi algoritmi za rekonstrukciju rijetkih signala. Predloženi algoritmi spadaju u grupu gradijentnih algoritama koji rekonstrukciju vrše u vremenskom domenu. Potencijalna primjena algoritama ne zavisi od domena rijetkosti signala.

80

16/02/2021

Similarity Report

Izvršena je detaljna analiza algoritma, i objašnjen način rada. Predložene su i hardverska i softverske implementacije. Hardverska implementacija pruža mogućnost da se vremenski zahtjevne operacije izvršavaju paralelno, čime se vrijeme izvršenja algoritma čini nezavisnim od broja nedostajućih odbiraka. Predložene softverske implementacije ogledaju se u kombinovanju gradijentnih algoritama sa drugim načinima rekonstrukcije, čime bivaju iskorišćene prednosti kombinovanih metoda, a sve u cilju brže rekonstrukcije. Gradijent mjere korišćen u samom postupku rekonstrukcije je iskorišćen i za detekciju odbiraka signala koji su zahvaćeni šumom. Predložena metoda za detekciju odbiraka zahvaćenih šumom, i njena iterativna varijanta, su detaljno objašnjeni i prezentovani kroz primjere, a za slučaj jednog nedostajućeg odbirka je izvedena i egzaktna formula koja objašnjava način rada predloženog metoda. Široki spektar potencijalnih aplikacija se ogleda u primjerima primjene gradijentnih algoritama. Pokazana je mogućnost rekonstrukcije fotografija sa digitalnih kamera, koje kao jedan od vidova signala koji je najrasprostranjeniji u informaciono komunikacionim tehnologijama, daju posebnu potvrdu aktuelnosti i mogućoj primjeni. Pokazano je da su algoritmi vrlo efikasni i u rekonstrukciji medicinskih signala kakvi su rendgen i elektrokardiogram (ECG). Sem pomenutih gradijentnih algoritama, u radu je dat i doprinos u pogledu teorije kompresivnog odbiraka, u vidu egzaktne formule za energiju greške u rekonstruisanim koeficijentima nerijetkih signalu, a pod pretpostavkom rijetkosti. Dobijeni teorijski rezultati su statistički potvrd⁻eni. UDK: INFORMATION ON DOCTORAL DISSERTATION PhD study program: PhD studies in Electrical Engineering Dissertation title: Analysis, implementation and applications of gradient based algorithms for reconstruction of compressively Keywords: sampled signals Gradient algorithms, compressive sensing, sparse signals, transformation domains, concentration measures, impulsive noise, signal reconstruction, convex optimization Thesis application date: 18. 12. 2018. Thesis acceptance date (UoM Senate Session): 17. 05. 2019. Scientific area: Electrical Engineering, Computer Science Specific scientific area: Digital Signal Processing ABSTRACT: New algorithms for reconstruction of sparse signals are presented in the thesis. Proposed algorithms belongs to group of gradient algorithms which reconstruct signal in time domain. The potential application of the algorithms does not depend on the domain of signal sparsity. A detailed analysis of the algorithm was performed, and principle of work was explained. Both, hardware and software implementation of the algorithms are presented. The hardware implementation provides the ability to perform time-consuming operations in parallel, making the execution time of the algorithm independent from the number of missing samples. The proposed software implementations are reflected in the combination of gradient algorithms with other reconstruction algorithms. In this way, advantage of the combined methods are used in order to perform faster reconstruction. The gradient of the measure used in the reconstruction process itself was also used to detect the signal samples affected by the noise. The proposed method for the detection of noisy samples, together with its iterative variant, are explained in detail and presented through examples. In the case case of one missing sample, an exact formula that explains how the proposed method works is derived. A wide range of potential applications is demonstrated through examples of gradient algorithm applications. The possibility of reconstruction of photographs from digital cameras is shown, which, as one of the types of signal that is the most widespread in modern communication technologies, give a special confirmation of the topicality and possible applications. It has been shown that algorithms are very efficient in the reconstruction of medical signals such as X-rays and electrocardiogram (ECG). The paper also contributes to the theory of compressive sensing, in the form of an exact formula for the error energy in a reconstructed coefficients of non-sparse signal under sparsity assumption. The obtained theoretical results are statistically confirmed. UDK: Izvod iz teze U tezi su obrad~eni gradijentni algoritmi (GA) za rekonstrukciju rijetkih signala. Cilj teze je analiza,

16/02/2021

Similarity Report

implementacije i mogućnosti primjene pomenutih algoritama. U prvom poglavlju je dat pregled osnovnih teorijskih koncepata koji se koriste u ostatku rada. Definisani su kontinualni i diskretni signali, transformacioni domeni koji su najviše korišćeni: diskretni Furijeov (DFT) i kosinusni domen (DCT), a nakon toga dat pregled osnovnih pojmova i definicija u oblasti kompresivnog odabiranja (CS). Dat je i pregled osnovnih rekonstrukcionih algoritama koji se dominantno koriste u istraživanjima. Takod⁻e, predstavljeni su novi naučni rezultati koji se tiču greške rekonstrukcije nerijetkih signala sa pretpostavkom rijetkosti. U drugom poglavlju je predstavljena osnovna ideja ovih algoritama, za jednodimenzione signale i DFT kao domen rijetkosti. Detaljno je prikazan način rada ovih algoritama, sa odgovarajućim skicama. Analiziran je glavni parametar algoritma ∆, a njegov uticaj na tačnost rekonstrukcije je izveden za slučaj jednog nedostajućeg odbirka. Takod⁻e, statistički je sagledana mogućnosti primjene GA u rekonstrukciji jednodimenzionih signala rijetkih u DFT domenu. Na kraju, performanse predstavljenog algoritma su upored⁻ene sa dva često korišćena algoritma u CS: ISTA i ℓ1-magic. Treće poglavlje se bavi implementacijama GA. Mogućnosti su sagledane iz dva ugla: hardverskog i softverskog. Predstavljena je hardverska šema za efikasnu implementaciju GA. Najveći nedostatak GA je uspješno prevazid⁻en upotrebom više hardverskih komponenti, čime predložena šema omogućava implementaciju u kojoj vrijeme izvršenja rekonstrukcije ne zavisi od broja odbiraka koji se rekonstruišu. Takod⁻e, predstavljene su dvije softverske implementacije GA. Prva predstavlja kombinaciju GA i algoritma koji vrši rekonstrukciju u jednom koraku, a druga kombinaciju GA i algoritma za rekonstrukciju signala rijetkih u hermitskom domenu. Potencijalne primjene GA su analizirane u četvrtom poglavlju. Pokazana je uspješna primjene GA u rekonstrukciji slika, kao i biomedicinskih signala: rendgen snimaka i ECG signala. Najveći dio ovog poglavlja posvećen je primjeni GA u detekciji i rekonstrukciji impulsnog šuma. Predstavljen je metod za detekciju šuma u odbircima signala za slučaj kada robustne tehnike detekcije ne daju zadovoljavajuće rezultate. Odrad⁻ena je i analiza za slučaj Gausovog šuma u odbircima signala. Osnovni rezultati teze su sumirani u zaključku. Thesis overview Analysis, implementation and application of gradient based algorithms (GA) for reconstruction od sparse signals is considered in

the thesis. The first chapter provides an overview of the

basic theoretical concepts used in the rest of the paper. Continuous and discrete signals are defined, also and used transformation domains: discrete Fourier (DFT) and cosine (DCT) domain. An overview of basic terms and definitions in compressive sensing(CS) is given next. An overview of the reconstruction algorithms that are commonly used in research is also given. Also, new scientific results concerning the error energy in a reconstructed coefficients of non-sparse signal under sparsity assumption is presented. The second chapter presents the basic idea of these algorithms, for one-dimensional signals and DFT as a sparsity domain. Principle of work has been explained and illustrated. The main parameter of the algorithm ∆ was analyzed, and its influence on the accuracy of the reconstruction was derived in case of one missing sample. The possibilities of GA application in the reconstruction of one-dimensional signals which are sparse in the DFT domain were statistically considered. Finally, the performance of the presented algorithm was compared with two commonly used algorithms in CS: ISTA and *l*1-magic. The third chapter deals with GA implementations. Hardware and software implementations are considered. A hardware scheme for efficient GA implementation is presented. The biggest drawback of GA, as an iterative algorithm, has been successfully overcome by use of multiple hardware components. In this

way, the execution time of the reconstruction does not depend on the number of samples to be reconstructed. Also, two GA software implementations were presented. The first is a combination of GA and a one-step reconstruction algorithm, and the second is a combination of GA and a signal reconstruction algorithm for signals which are sparse in hermite domain. Potential applications of GA are analyzed in chapter Four. Successful applications of GA in image reconstruction have been demonstrated, as well as biomedical signals: X-rays and electrocardiogram (ECG) signals. Most

of this chapter is devoted to the application of GA in the detection and reconstruction of

impulse noise. A method for impulse noise detection in signal samples for the case when robust detection techniques do not give satisfactory results is presented. An analysis for the case of Gaussian noise in signal samples was also performed.

The main results of the thesis are summarized in the

conclusion. Popis akronima DOS CS DCT DFT HT FPGA GA ISTA LASSO FT FFT MAE MSE MP OMP RIP SIRA SNR SRR -----

Compressive Sensing (kompresivno odabiranje); Discrete Cosine Transform (diskretna kosinusna transformacija); Diskretna Furijeova Transformacija; Hermitska Transformacija;

Field Programmable Gate Array Gradijentni Algoritam; Iterative Shrinkage Thresholding Algorithm; Least Absolute Selection and Shrinking Operator; Furijeova Transformacija; Fast Fourier Transformation (brza Furijeova transformacija); Mean Absolute Error (srednja apsolutna greška);

Mean Squared Error (srednja kvadratna greška); Matching Pursuit; Orthogonal Matching Pursuit;	

82

86

1

signala sa pretpostavkom rijetkosti 2 Analiza gradijentnih algoritama 2.1 Motiv
pretraga
vremenskom domenu \ldots 2.2.2 Kriterijum za zaustavljanje algoritma \ldots 2.3 Parametar Δ i njegov
uticaj na rekonstrukciju \ldots 2.3.1 Parametar Δ i tačnost rekonstrukcije \ldots 2.3.2
Kriterijum za smanjenje parametra Δ 2.4 Primjeri rekonstrukcije za DFT domen i l 1 normu
\dots 2.4.1 Uticaj rijetkosti i broja dostupnih odbiraka na potencijalnu primjenu \dots 2.5 Pored $^-$ enje sa drugim algoritmima \dots
algoritmom za LASSO minimizaciju 1 4 4 5 6 8 8 13 14 16 17 24 31 38 38 40 42 46 46 49 52 55 57 63 65 65 67 11
3 Implementacija gradijentnih algoritama 3.1 Softverske implementacije
gradijentnog i algoritma koji rekonstrukciju vrši u jednom koraku
signala rijetkih u hermitskom domenu upotrebom gradijentnog algoritma
hardversku realizaciju gradijentnih algoritama 3.2.1 Blok za korekciju
Analiza složenosti
Rekonstrukcija 2D signala - slika
4.1.2 Rekonstrukcija slika u boji
95 4.2.1 Rekonstrukcija rendgen snimaka
selekciju oštećenih odbiraka 102 4.3.4 Iterativna procedura za preostali šum 106 4.4
Gradijentni algoritam i šum u svim odbircima
111 4.4.2 Gausov šum u gradijentnom algoritmu 114 Zaključak 117 Bibliografija 118 Popis slika
1.1 Diskretizacija signala
1.3 Signal u vremenskom (lijevo) i frekvencijskom (desno) domenu 1.4 Proces dobijanja mjera u CS
vrijednosti nedostajućeg odbirka 1.7 Ukupna energija greške u rekonstruisanim koeficijentima
. 2.1 2.2 2.3 2.4 6 8 9 15 18 29 36 Uticaj broja nedostajućih odbiraka na transformacioni domen
Rekonstrukcija dva odbirka signala direktnom pretragom u vremenskom domenu 41 Rekonstrukcija signala gradijentnim
algoritmom u 8 iteracija 47 Rekonstrukcija signala gradijentnim algoritmom u 50 iteracija, pri čemu je parametar
Δ mijenjan kao $\Delta \leftarrow \Delta/3$ na svakih 5 iteracija 49 2.5 Ugao α izmed ⁻ u susjednih gradijentnih vektora G tokom
procesa rekonstrukcije koji se obavio kroz 80 iteracija 2.6 2.7 2.8 2.9 Rekonstrukcija signala
gradijentnim algoritmom sa adaptivnim $\Delta \dots \dots$ Rekonstrukcija signala gradijentnim algoritmom sa adaptivnim $\Delta \dots \dots$
. Rekonstrukcija signala gradijentnim algoritmom sa adaptivnim ${\scriptstyle\Delta}\ldots\ldots$. DFT domen rekonstruisanog signala tokom
iteracija 2.10 Statistička analiza performansi gradijentnog algoritma u DFT domenu 2.11 Statistička
analiza performansi GA i ℓ1-magic algoritma u DFT domenu 2.12 Pored⁻enje brzine rekonstrukcije GA i ℓ1-magic
algoritma za različite vrijednosti parametara NA i K
performansi GA i ISTA algoritma u DCT domenu 3.1 Mogućnost primjene SIRA algoritma tokom gradijentne
rekonstrukcije i DFT domen tokom rekonstrukcija

funkcija rijetkosti K i broja dostupnih odbiraka NA Rekonstrukcija signala koji je rijedak u hermitskom domenu Arhitektura za hardversku realizaciju gradijentog algoritma u DFT domenu. . . 55 56 59 61 62 64 66 68 70 75 78 84 86 13 3.5 u boji za različite vrijednosti broja nedostajućih piksela. . Rekonstrukcija rendgen slika kojima nedostaje 30% piksela Rekonstrukcija QRS kompleksa Rekonstrukcija signala kome je 16 od ukupno 128 odbiraka zahvaćeno šumom Rekonstrukcija signala kod koga je 64 od ukupno 128 odbiraka zahvaćeno 94 96 97 100 103 4.8 Šum sortiran predloženim kriterijumom (lijevo) i zašumljeni signal sortiran istim kriterijumom (desno)...... predloženim kriterijumom, a 32 nasumičnom/direktnom pretragom 105 4.10 Šum u odbircima signala prikazan redosljedom kojim su birani odbirci. Amplituda šuma je u nivou amplituda signala 2A 108 4.11 Rekonstrukcija rijetkog signala zahvaćenog šumom, pri čemu su odbirci za rekonstrukciju birani na osnovu iterativne procedure. U svakoj iteraciji, r = 4 odbirka su uklonjena. 109 4.12 Rekonstrukcija odbiraka čiji su svi odbirci zahvaćeni šumom. U svakoj iteraciji je uklonjeno r = 4 odbiraka..... 110 4.13 Poboljšanje srednje energije šuma u rekonstruisanom signalu u odnosu na energiju šuma na ulazu za različite malog intenziteta u svim odbircima sortiran predloženim kriterijumom tabela 2.1 Vrijednost ℓ1 norme za razne kombinacije broja nedostajućih odbiraka i inteziteta oštećenja. Vrijednost mjere mogla primijeniti rekonstrukcija u jednom koraku za dužinu signala N = 128.....4.1 40 77 77 Statistički i teorijski Podaci koji opisuju neki predmet, dogad⁻aj, dešavanje itd. se nazivaju informacije. Jedna od potreba savremenog života jeste efikasan prenos informacija sa jednog mjesta na drugo. Da bismo informacije mogli prenositi moramo ih najprije zapisati pomoću odgovarajućeg niza simbola, a nakon toga taj niz simbola fizički prenijeti sa jednog mjesta na drugo. Taj fizički proces zadužen za prenos naziva se signal. Signali mogu biti analogni i digitalni. Naučna oblast koja se bavi analizom i obradom digitalnih signala se naziva digitalna obrada signala (DOS). Ubrzani razvoj moćnih hardverskih komponenti i računara, omogućen izumom tranzistora u Belovoj laboratoriji 1947. godine, svrstava digitalnu obradu signala u red izuzetno popularnih i istraživanih naučnih oblasti XX i XXI vijeka. Savremeni računari, zajedno sa periferijama, omogućavaju vrlo jednostavnu akviziciju, analizu i obradu digitalnih signala. Sve pomenute procedure je moguće obavljati upotrebom modernih i dobro razvijenih inženjerskih softverskih alata. Zbog svega navedenog, digitalna obrada signala je našla široku primjenu u nizu praktičnih aplikacija iz raznih oblasti: informacione tehnologije, multimedijalni sistemi - audio i video signali, radarski, sonarski i seizmički sistemi, telekomunikacije, medicina itd. Da bismo uopšte govorili o DOS, potrebno je prvo neki signal iz analognog domena (najčešći domen akvizicije) pretvoriti u digitalni. Fundamentalna matematička relacija koja povezuje analogne i diskretne (u vremenu), a samim tim i digitalne (diskretne i u vremenu i u amplitudi/vrijednosti) signale je teorema o odabiranju. Ova teorema je otkrivena nezavisno od strane više naučnika, pa se tako ona još i naziva Koteljnikova

teorema ili Nikvist-Šenon-Koteljnikova teorema. Ova teorema dokazuje da je analogne signale moguće jednoznačno rekonstruisati koristeći vrijednosti uzete u tačno odred⁻enim vremenskim trenucima. Uslov koji je potrebno zadovoljiti je da frekvencija uzimanja odbiraka mora biti dva puta veća od maksimalne frekvencije u spektru posmatranog signala. Zadovoljenje ove teoreme je dugo godina smatrano neophodnih uslovom za primjenu tehnika razvijenih u DOS. Nova naučna oblast nazvana kompresivno odabiranje (CS - Compressed sensing/Compressive sensing), čiji počeci se vežu za [1, 2] pravi zaokret u pristupu, i pruža ogroman spektar novih mogućnosti kada je DOS u pitanju. U prethodno pomenutim pionirskim radovima u ovoj oblasti, a koristeći i znanja i matematičke tehnike otkrivene godinama ranije, pokazano je da se rekonstrukcija signala može izvršiti iz mnogo manjeg Uvod broja odbiraka/mjerenja nego što je slučaj kod teoreme o odabiranju. Uprošćeno rečeno, potrebno je da signal bude rijedak (da ima mali broj nenultih koeficijenata u odnosu na ukupan broj koeficijenata) u odred-enom transformacionom domenu da bi ga mogli jednoznačno rekonstruisati. Iako na prvi pogled djeluje da je uslov previše restriktivan i da sužava primjenu ove oblasti u realnih aplikacijama, pokazalo se da veliki broj praktičnih signala zadovoljava ovaj uslov u nekom od transformacionih domena. Imajući u vidu da je smanjivanje potrebnog broja odbiraka/mjerenja direktno proporcionalno potrebnom vremenu ekspozicije kao i složenosti potrebnog hardvera, to su metode razvijane u oblasti CS našle široku primjenu u oblastima kakve su MRI, kamere visokih rezolucija, informacione tehnologije itd. Postoje dva glavna pravca istraživanja u okviru oblasti CS. Prvi je proces dobijanja mjerenja iz kojih je kasnije moguće rekonstruisati originalni signal. Iako je pokazano da slučajne mjerne matrice (matrice koje se koriste za dobijanje mjerenja) daju solidne rezultate, ipak su razvijeni mnogi algoritmi čiji je cilj konstrukcija izuzetno efikasnih mjernih matrica za razne klase signala. Drugi pravac, kojim se ova teza dominantno bavi, je proces rekonstrukcije originalnog signala iz dostupnih mjerenja. Postoji niz klasa rekonstrukcionih algoritama čija je priroda rada potpuno različita. Tako postoje algoritmi koji vrše direktnu pretragu, pohlepni (greedy) algoritmi, konveksni algoritmi, algoritmi bazirani na statistici. Ova doktorska teza se bavi gradijentnim algoritmima koji rekonstrukciju vrše u vremenskom (akvizicionim) domenu, koristeći svojstvo rijetkosti u transformacionom domenu. Kako ovi algoritmi koriste I1-normu za rekonstrukciju, to ih možemo svrstati u grupu konveksnih optimizacionih algoritama. U prvoj glavi je napravljen detaljni uvod - od analognih signala, preko digitalnih signala do oblasti kompresivnog odabiranja. Takod⁻e dat je i pregled osnovnih matematičkih oblasti koje su korišćene u ostatku rada: transformacioni domeni, diskretna Furijeova transformacija (DFT), diskretna kosinusna transformacija (DCT - discrete cosine transform), mjere koncentracije itd. Nakon uvod-enja i definisanja problematike CS, dat je pregled osnovnih pojmova iz ove oblasti kao što su: svojstvo ograničene izometrije (RIP - restricted isometry property), indeks koherentnosti itd. Takod⁻e analizirane su greške rekonstrukcije signala koji su samo aproksimativno rijetki, pod pretpostavkom rijetkosti. Druga glava se bavi analizom gradijentnih algoritma (GA). Dat je pregled od osnovne ideje do finalne realizacije jedne njegove verzije, za oblast 1D signala i DFT kao domena rijetkosti. Takod⁻e kroz primjere je prikazana njegova efikasnost a izvršeno je detaljno pored⁻enje performansi (brzine i tačnosti rekonstrukcije) prikazanog algoritma sa nekim opšte korišćenim algoritmima. Takod⁻e prikazana je mogućnost primjene verzije ovih algoritama na različite mjere koncentracije. Treća glava se bavi implementacijom ovih algoritama. Prikazana je efikasna softverska realizacija kao i predlog za hardversku realizaciju ovog algoritma. Upotreba i mogućnosti paralelne realizacije na savremenim računarima sa više jezgara su takod[–]e obrad[–]eni u ovoj glavi. Četvrta glava se bavi primjenom gradijentnih algoritama. Prikazane se mogućnosti rekonstrukcije jednodimenzionih signala u DFT domenu, kao i dvodimenzionih signala - slika Uvod u DCT domenu. Gradijent mjere korišćen u GA je iskorišćen za detekciju odbiraka

signala zahvaćenih impulsnim šumom. Efikasna verzija za iterativnu detekciju i otklanjanje šuma je takod⁻e predstavljena. Mogućnost kombinovanja gradijentnih algoritma i svih njegovih prednosti sa algoritmima za brzu rekonstrukciju u jednom koraku je takod⁻e analizirana u ovoj glavi. Ideje i analize predstavljene u ovoj tezi su potvrd⁻ene brojnim numeričkim primjerima. Glava 1 Od analognih signala do kompresivnog odabiranja U ovoj glavi će biti predstavljene teorijske osnove i uvedeni matematički pojmovi i definicije koje će se dominantno koristiti u radu. Na samom početku će biti definisani analogni signali, a nakon toga biće uveden pojam diskretnih signala. Biće definisane osnovne transformacije koje se koriste u DOS, kao i mjere koncentracije čija upotreba je od velikog značaja za same gradijentne algoritme obrad⁻ivane u ovoj doktorskoj tezi. Nakon definisanja osnovnih elemenata DOS [3–5], formalno je uveden pojam kompresivnog odabiranja, zajedno sa značajnim pratećim matematičkim formulacijama kao što su: rijetkost signala, svojstvo ograničene izometrije, indeks koherencije matrice, Welch-ova donja granica itd. Nakon definisanja rekonstrukcionog problema, dat je pregled klasa rekonstrukcionih algoritama i opšti način rješavanja problema rekonstrukcije. U ovoj glavi je takod⁻e predstavljen jedan od naučnih doprinosa ove teze, a to je analiza greške rekonstrukcije signala koji su aproksimativno rijetki i nerijetki u uslovima šuma. Rekonstrukcija je vršena u DFT domenu. Data je tačna formula koja povezuje očekivanu energiju greške u rekonstruisanim koeficijentima, energiju preostalih koeficijenata nerijetkog signala i energiju šuma u mjerenjima. Naučni doprinos ove relacije je verifikovan publikovanjem rada u med⁻unarodnom časopisu [6]. 1.1 Signali U kolokvijalnom govoru se često ne pravi razlika izmed⁻u signala i informacije. Ipak valja napomenuti da je informacija ono od interese, tj. ono što želimo da sačuvamo ili prenesemo, a signal je fizički proces zadužen za skladištenje, obradu i prenos informacija. U zavisnosti od prirode signala i informacije koja je sadržana u njemu, imamo slučajeve kada je informaciju lakše ili teže izvući iz signala. Nekada i nije moguće izvući informaciju iz signala koristeći poznate metode, iako znamo da je ona ugrad⁻ena u signal. Primjer gdje je informaciju lako izvući iz signala je amplitudski modulisani radio signal, dok je prepoznavanje govora (koje možemo sresti na pametnim telefonima npr.), situacija gdje je mnogo teže izvući informaciju iz signala (govora). Mnoga aktuelna naučna istraživanja u oblasti DOS bave se izvlačenjem informacija iz signala u kojima su sadržane. 1.1.1 Kontinualni signali Mnogi signali su po svojoj prirodi kontinualni u vremenu. Prosto rečeno, za neki signal kažemo da je kontinualan u vremenu ako za posmatrani opseg vremena u kojem je difinisan, možemo svakom vremenskom trenutku pridružiti vrijednost signala. Za slučaj kada su vrijednosti signala realni ili kompleksni brojevi, imamo realne i kompleksne signale, respektivno. Formalno, kontinualni signal se matematički može predstaviti kao funkcija koja preslikava skup realnih brojeva R na skup kompleksnih brojeva C: x : R \rightarrow C, odnosno x : t \rightarrow x(t). Ukoliko se skup realnih brojeva preslikava na skup realnih a ne kompleksnih brojeva, u tom slučaju govorimo o realnim signalima [3, 7]. Postoji niz dodatnih definicija, koje možemo koristiti da dodatno opišemo signal, a ovdje ćemo pomenuti samo naiznačajnije: • Za signal x(t) kažemo da je ograničenog trajanja ako je x(t) = 0, za x ∈/ [a, b] • Amplituda signala x(t) je A(t) = |x(t)| • Magnituda (maksimalna apsolutna vrijednost) signala x(t) se definiše kao Mx = max |x(t)| • Trenutnu snagu signala definišemo kao Px(t) = x2(t) || • Energija signala je definisana integralom | | ∞ Ex = x2(t) dt -∫∞ | | Vrijedi pomenuti da u zavisnosti od vrijednosti snage i energije postoje signali konačne energije i signali konačne snage. Svaka obrada signala x(t) koja za cili ima dobijanje informacija se naziva analiza signala u vremenskom domenu. Za razliku od vremenske analize, signale možemo analizirati i u nekom od transformacionih domena. Rekli smo da je nekada vrlo lako dobiti informaciju posmatrajući vremenski oblik signala. Ukoliko posmatramo signal koji opisuje promjenu brzine automobila x(t) x(n)=x(t)t=nΔtΔt Δt t n Slika 1.1: Diskretizacija signala. Kontinualni signal je prikazan lijevo, dok je diskretni signal dobijen njegovim odabiranjem prikazan

desno. u vremenu, sama vrijednost ovog signala nam daje informaciju o brzini automobila, dok posmatranjem vremenskih oblika analognih televizijskih signala ne možemo zaključiti kakva bi slika bila prikazana na televizoru ili nekom drugom ured⁻aju za reprodukciju u odred⁻enom trenutku. 1.1.2 Diskretni signali Diskretni signal se modelira funkcijom koja skup cijelih brojeva Z preslikava na skup kompleksnih brojeva C: $x : Z \to C$, odnosno $x : n \to x(n)$ [3, 7]. Uočavamo da su diskretni signali definisani na prebrojivim skupovima. Kada je kodomen konačan skup, tada govorimo o diskretnim signalima. Pojmovi diskretni i digitalni, takod⁻e često bivaju pogrešno interpretirani u svakodnevnoj upotrebi. Kao što su mnogi signali kontinualni po svojoj prirodi, tako postoje i signali koji su izvorno diskretni. Bruto domaći proizvod (eng. GDP) neke zemlje je vrijednost koja je pokazatelj vrijednosti dobara i usluga proizvedenih u nekoj zemlji u toku jedne godine. Samim tim što se ovom veličinom izražava neka osobina na godišnjem nivou, prirodno je da ovaj signal bude diskretan, jer je redni broj godine u ovom slučaju nezavisna promjenljiva. Ipak, diskretni signali se u velikom broju slučajeva dobijaju odabiranjem analognih signala, slika 1.1. Pod odabiranjem se podrazumijeva uzimanje vrijednosti analognog signala u tačno odred⁻enim trenucima vremena: x(n) = x(t)|t=n∆t∆t. (1.1) Po analogiji sa kontinualnim signalima, i za diskretne signale možemo uvesti odred⁻ene definicije: • Za diskretni signal kažemo da je sa ograničenog trajanja ako je x(n) ≠ 0 samo na konačnom skupu indeksa n. • Amplituda diskretnog signala x(n) je A(n) = |x(n)| • Magnituda (maksimalna apsolutna vrijednost) signala x(n) se definiše kao Mx = max |x(n)| • Trenutnu snagu signala definišemo kao Px(n) = x2(n) | | • Energija signala je definisana sumom | | Ex = ∑ x2(n) ∞ −∞ | | Najznačajnija prednost diskretnih u odnosu na analogne signale jeste da se oni predstavljaju konačnim skupom vrijednosti, pa ih je kao takve moguće analizirati na mikroprocesorima ili specijalizovanim hardverima namijenjenim obradi signala. Time je njihova obrada svedena na pisanje koda koji se izvršava na pomenutim hardverskih komponentama. Sa druge strane, za obradu analognih signala se koriste sistemi sastavljeni od fizičkih elemenata (otpornici, kondenzatori, kalemi, tranzistori ...), pa ih je, imajući u vidu složenost dizajniranja ovih kola u odnosu na pisanje koda, neuporedivo teže analizirati. Da bi se potpuno objasnila veza kontinualnih i diskretnih signala potrebno je uvesti pojam Furijeove transformacije, o kojoj će više riječi biti u nastavku. Ona povezuje signal x(t) sa njegovom Furijeovom transformacijom X(jωa) na sledeći način: ∞ X(ω) = x(t)e-jωtdt -∫∞ i 1 ∞ x(t) = X (ω)e jωt dω , 2π -∫∞ gdje je ω frekvencija izražena u [rad/s], pri čemu važi da je ω = 2 π f , gdje je f frekvencija izražena u [Hz]. Za signal x(t) kažemo da je ograničenog opsega sa maksimalnom frekvencijom ω m ako je X(ω) = 0 za svako ω > ω m, kao što je prikazano na slici 1.2. Svaki signal ograničenog spektra koji se odabere tako da je frekvencija odabiranja fo veća od dvostruke maksimalne frekvencije u Furijeovom domenu, tj. fo ≥ 2 fm (∆t ≤ π/wm), može se jedinstveno rekonstruisati iz odbiraka koristeći relaciju ∞

 $\mathbf{x}(\mathbf{t}) = \mathbf{n} = \sum -\infty \mathbf{x}(\mathbf{n} \Delta \mathbf{t}) \Delta(\pi \mathbf{t} (\mathbf{t} - \mathbf{n} \Delta \mathbf{t})) \sin \Delta \pi \mathbf{t} (\mathbf{t} - \mathbf{n} \Delta \mathbf{t})$

). Prethodno navedena relacija poznata je kao Nikvist-Šenonova teorema, ili teorema o odabiranju. X(ω) - ωm ω m ω Slika 1.2: Furijeova transformacija signala ograničenog spektra. Interesantno je da je ova teorema otkrivena nezavisno od strane više istraživača, već navedenih Herija Nikvista (1889–1976) i Kloda Šenona (1916–2001), ali i Edmunda T. Vitekera (1873– 1956) i Vladimira Aleksandroviča Koteljnjikova (1908–2005). Upravo zbog toga se ova teorema nekada naziva i Koteljnikova teorema, ili Nikvist-Šenon-Koteljnikova teorema. 1.2 Transformacioni domeni Česti su slučajevi kada je informacija koju nosi signal sadržana u njemu tako da posmatranjem vremenskog domena nije moguće doći do nje. U tim slučajevima, signali se

posebnim transformacijama, najčešće linearnim, prevode u druge domene, koje nazivamo transformacionim, i u njima analiziraju. Postoje čak i transformacije, koje jednodimenzione prevode u dvodimenzione signale. Jedna od oblasti DOS koja se oslanja na ovaj tip transformacija je vremensko-frekvencijska analiza signala. U nastavku će biti analizirane dvije često korišćene transformacije: Furijeova i kosinusna. Akcenat će biti na diskretnim verzijama ovih transformacija, imajući u vidu njihovu primjenu u nastavku ove disertacije. 1.2.1 Diskretna Furijeova transformacija - DFT Fundamentalna transformacija u DOS je diskretna Furijeova transformacija (DFT). Da bismo došli do definicije i osobina pomenute transformacije krenućemo od Furijeove transformacije, zatim uvesti pojam Furijeove transformacije diskretnih signala i na kraju definisati i opisati diskretnu Furijeovu transformaciju i njene osobine. Furijeova transformacija (kontinualnih signala) se definiše kao ∞ X(ω) = x(t)e-jωtdt -∫∞ x(t) |X (ω)| t ω Slika 1.3: Signal u vremenskom (lijevo) i frekvencijskom (desno) domenu Množenjem obije strane relacije sa ejωτ i integraljenjem po τ, dobijamo −∫∞ ∞ ∞ ∞ X(ω)ejωτ = −∫∞−∫∞ x(t)ejω(τ-t)dtdω. Dalje, koristeći relaciju ∞ ej $\omega(\tau-t)d\omega$ = $2\pi\delta(\tau-t)$, $-\int \infty$ dobijamo relaciju za inverznu Furijeovu transformaciju 1 ∞ x(t) = X (ω) e j ω t d ω . 2π -∫∞ Amplitudski spektar FT definisan je kao |X (ω)|, a sama funkcija je kompleksna. Da bismo shvatili značaj ove transformacije poslužićemo se primjerom jednostavnog signala sastavljenog od 3 sinusojde. Posmatrani signal je prikazan na slici 1.3, i to na lijevom grafiku vremenski oblik signal, a na desnom frekvencijski domen, dobijen primjenom Furijeove transformacije na vremenski oblik signala. Kako su amplituda i frekvencije i amplitude ovih sinusoida dovoljni za potpuno opisivanje signala, vidimo da se iste mnogo lakše uočavaju i potencijalno koriste posmatrajući desni grafik. Sem ovog veoma jednostavnog primjera, mnogo signali od praktičnog značaja se sastoje od ograničenog broja sinusoidalnih komponenti čije su amplitude i frekvencije od aplikativnog značaja. To je i razlog ogromne primjene ove transformacije u DOS. Već je rečeno kako se od analognog signala dobija diskrektni, pa je sada moguće napraviti korak dalje ka realizaciji i upotrebi FT u savremenim aplikacijama uvod⁻enjem Furijeova transformacija diskretnih signala [3]. Za diskretni signala x(n) ova transformacija je definisana kao X(ejωx) = Σ x(n)e−jωxn. ∞ n=−∞ Napomenimo da je frekvencija ω normalizovana, a da je sama transformacija periodična sa periodom 2π . Prirodno se nameće pitanje veze FT kontinualnih i diskretnih signala. Ukoliko krenemo od formule za FT kontinualnih signala $\infty X(\omega) = x(t)e-j\omega t dt, -\int \infty i iskoristimo pravougaono pravilo$ integracije dobijamo aproksimaciju prethodne jednačine X(ω) ≈ Σx(n∆t)e-jωn∆t∆t. ∞ -∞ Ukoliko sada uvedemo oznake x(nΔt)Δt → x(n) ω Δt → ωx dolazimo do veze Furijeove transformacije analognih i diskretnih signala X(ω)ω=ωx/Δt ≈ $\sum x(n)e-i\omega xn = X(ei\omega x)$. $\infty -\infty$ Inverzna Furijeova transformacija diskretnih signala se definiše kao $x(n) = 1 \pi X$ (e j ωx)e jωxndωx. 2π – \int π Kako je Furijeova transformacija diskretnih signala kontinualna funkcija, sljedeći prirodan korak bi bio diskretizacija ove funkcije. Time dolazimo do diskretne Furijeove transformacije koja će se dominantno koristiti u tezi. Krenimo od izraza za Furijeovu transformaciju diskretnog signala x(n) sačinjenog od N odbiraka n = 0,

vrijednosti ove funkcije sa korakom Δωx = 2π /N na intervalu −π ≤ ωx < π . Dobijamo X(ejωx)|ωx=kΔωx=2kπ/N = ∑ x(n)e−j2Nπnk. N−1 n=0 Prethodno dobijeni izraz ćemo označavati sa X (k) i on predstavlja diskretnu Furijeovu transformaciju X(k)= ∑ x(n)e−j2Nπnk, N−1 (1.2) n=0 gdje je k diskretni indeks frekvencije. Vidimo da je DFT periodična po k,

16/02/2021

Similarity Report

sa periodom N. Ukoliko obje strane prethodne relacije pomnožimo sa e j $2N\pi$ mk i sumiramo po indeksu k dobijamo izraz

N-1 $\sum X(k)ej2N\pi mk = \sum$

x(n) ∑ e− j2Nπ(m −n)k, N−1 N−1 k=0 n= 0 k=0

pri čemu važi N −1 k=0 ∑ e− j 2Nπ

```
(m−n)k = N δ (m − n). x(n) = N 1 N∑−1X (K)
```

ej2Nπnk, (1.3) k=0 gdje n uzima vrijednost n = 0, 1, ... N - 1. Uvedimo vektorske oznake za signal u vremenskom

```
x = [x(0), x(1), \dots x(N-1)] i transformacionom X = [X(0), X(1), \dots X(N-1)] 47
```

domenu. Veza signala u vremenskom i transformacionom domenu se tada može predstaviti relacijama X = $\Phi x x = \Phi - 1X$ (1.4) Uzimaju u obzir jednačine (1.2), (1.2) i (1.4) pomenutu vezu vremenskog i transformacionog domena možemo predstaviti i koristeći transformacionu matricu Φ i inverznu transformacionu matricu $\Phi - 1 X(0) 1 1 ... 1 x(0) [X(1)] = [1]$

```
e-j2π/N e-j2π(N-1)/N \| x (1) \|....., (1.5) X (N-1) 1 e-j2π(N-1)/N e-j2π (N-1) 26 (N-1)/N \| \| x \|
```

1) $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} x(0) 1 1 \dots 1 X(0) \begin{bmatrix} 1 \\ 1 \end{bmatrix} x(0) = 0$

```
(1) = \begin{bmatrix} 1 \ ej2\pi/N \ ej2\pi(N-1)/N \ ... \end{bmatrix} X (1) \begin{bmatrix} 1 \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ... \ ...
```

1)(N-1)/N)

X(N-1)	gdjeje [] [][]	1 1 1 Φ= [1 e-j2π/N e-j2π(N-1)/N] (1. 7) 1	17
e−j2π(N	-1)/N e-j2π(N-1)(N-1)	/N) Posmatrajući izraz 1.	

3 može se uočiti da je signal x(n) dobijen na ovaj način periodičan sa 🛛 periodomNjervaži

27

 $x(n+N) = N = 1 N\Sigma - 1X$ (K) $ej2N\pi$ (n+N) k = x(n). k=

0 Posmatrajući prethodnu jednačinu možemo zaključiti da DFT podrazumijeva da je signal x(n), za koji je računata, periodično produžen, a da su u njenom računanju korišćeni samo njegovi odbirci iz opsega n = 0, 1, . . . N − 1. Kako su od interesa samo odbirci/vrijednosti signala upravo iz ovog opsega, često se činjenica o periodičnosti signala x(n) u ovakvim slučajevima svjesno zanemaruje. Osobine DFT 0 ovom odjeljku će biti opisane neke od bitnih osobina DFT. • Pomjeranje u vremenu Ova osobina ima za cilj da uspostavi vezu DFT signala x(n), i signala x(n – m). Polazeći od definicije (1.3) za

signal x(n - m) dobijamo x(n - m) = N 1 $N \ge -1X$ (K) ej $2N\pi$ (n-

m)k k=0 = N1 Nk Σ =-01X(K)e-j2N π mk e j 2N π nk = IDFT X (k)e- j 2N π mk { } gdje je sa IDFT označena inverzna diskretna Furijeova transformacija signala koji je argument pomenutog operatora. Ukoliko sada primjenimo DFT na obije strane jednakosti dobijamo DFT {x(n - m)} = X (k)e- j 2N π mk Kako je već rečeno da DFT podrazumijeva periodično produžen signal x(n), u konkretnom slučaju pomjeranje se vrši nakon periodičnog produženja signala. • Pomjeranje u frekvenciji Na sličan način možemo dod⁻i do izraza koji odgovara pomenutoj osobini a koji glasi DFT x(n)e j 2N π mk = X (k - m). { } Množenje signala u vremenskom domenu sa e j2 π mk/N odgovara pomjeranju za m u frekvenciji. • Parsevalova teorema Ovom osobinom je izražena veza energije signala u svakom od domena Nn Σ =-01 |x(n)|2 = N1 Nk Σ =-01 |X (k)|2 • Konvolucija Konvolucija dva periodična signala x(n) i y(n) je definisana izrazom N-1 z(n) = Σ x(m)y(n - m). m=0 U DFT domenu ima oblik Z

n) i z(n). 1.2.2 Diskretna kosinusna transformacija - DCT Još jedna od često korišćenih transformacija u DOS je diskretna kosinusna transformacija (Discrete cosine transform - DCT). Ova transformacija je našla široku primjenu u obradi slike i videa. Postoji više definicija DCT, a ovdje ćemo navesti jednu od mogućih [8] X(0)=

kπ 2N, za k=1,2,...,N-1. Za ovako definisanu DCT, njoj inverzna transformacija bi bila x(n)= $\sqrt{NX(0)}+\sqrt{N}$ k∑=1X(k)cos 1 2 N-1 (2n+1)kπ 2N. Kako se ova transformacija često koristi u obradi slike, tj. kod dvodimenzionih signala, to ćemo ovdje definisati i jednu od često korišćenih dvodimenzionih oblika DCT, označenu sa 2D-DCT N1-1N2-1 X(k1,k2) = $\sum \sum 4x(n1,n2)cos (2n1 + 1)k1\pi (2n2 + 1)k2\pi n1=0 n2=0 2N1 cos 2N2, za$

74

k1 = 0, 1, ..., N1 - 1 i k2 = 0, 1, ..., N2 - 1.

Njoj inverzna DCT se definiše kao x(n1, n2) = N1N2 Nk Σ 11=-01Nk Σ 22=-01 β i (k1) β 1(k1)X(k1,k2)cos (2n12+N11)k1 π cos (2n22+N12)k2π 1, gdie je βi(ki) za i = 1, 2 definisano kao βi(ki) = 1/2 ki = 0 (1) 1. ki = 1, 2, ..., Ni – 1 Važno je pomenuti da su DFT i DC 🕻 dosta slične transformacije i da je moguće izvesti vezu izmed u njih, med utim, ipak su dovoljno različite da bi svaka našla svoju primjenu u odred⁻eni 13 oblastima DOS. 1.3 Kompresivno odabiranje Pojam kompresivnog odabiranja, (compressive sensing ili compressed sensing - CS) je prvi put uveden od strane Danohoa i Baraniaka [1, 2], iako je slična istraživanja paralelno sa njima sprovodio i Candes [9–11]. U svojim radovima, oni su pokazali da signali koji su rijetki (eng. sparse) u nekom transformacionom domenu, mogu biti rekonstruisani iz M mjerenja, pri čemu je M mnogo manje od stvarne dužine signala N. Pojam mjerenja se koristi da označi linearne kombinacije koeficijenata transformacionog domena signala. Na ovaj način je napravljen otklon od klasičnog pristupa u kojem je signal morao biti odabran u skladu sa teoremom o odabiranju. Imajući u vidu da je teoreme o odabiranju zauzimala centralno mjesto u DOS dugi niz godina, jasno je da je ovim pristupom, koji je značajno relaksirao uslove definisane ovom teoremom, otvoreno ogromno polje za potencijalne primjene ovih metoda. Upravo zbog toga CS je izuzetno popularna oblast istraživanja posljednjih 10 godina, i predstavlja često istraživanu oblast u okviru DOS [12–21]. Posmatrajmo diskretni realni signal x(n) konačne dužine N. Vektor elemenata ovog signala označićemo sa x. Pod pretpostavkom da ovaj signal u nekom transformacionom domenu T ima mali broj nenultih koeficijenata u odnosu na ukupan broj, za takav signal kažemo da je rijedak (sparse) u T domenu. Vektor elemenata ovog signala označimo sa X. Posmatrajmo transformacionu matricu Ψ koja povezuje vremenski i transformacioni domen signala: x = ΨX. Ovu vektorsku jednačinu, i njoj inverznu možemo zapisati i u obliku sistema jednačina N –1 x(n) = Σ ψk(n)X

(k), (1. 8) k=0 N- 1 X(k) = $\sum \psi n * (k) x$ (n). n=

0 Dalje, uvedimo matricu ΦM×N, pri čemu važi da je M \ll N. Da bismo dobili mjerenja y na osnovu kojih je kasnije moguće rekonstruisati originalni signal, potrebno je da izvršimo matrično množenje y = ΦΨX, (1.9) odnosno y = AX, (1.10) gdje je A = ΦΨ. Na slici 1.4 je prikazan postupak dobijanja mjerenja u CS [22]. Sažeti skup mjerenja y je najčešće rezultat želje da signal odaberemo sa najmanjim y $\phi \psi$ X M = N K-spars x y A X M = N K-spars Slika 1.4: Proces dobijanja mjera u CS mogućim brojem mjerenja. Ovaj pristup, u kome su mjerenja rezultat posebne strategije je bio pokretač za razvoj cijele oblasti. Sa tim u vezi, vršena su razna istraživanja koja bi objasnila na koji način je najbolje dobiti ista, kako bi se kasnije mogao rekonstruisati originalni signal. Med⁻utim, izuzetno je važno pomenuti da sažeti skup mjerenja može biti i rezultat fizičke nedostupnosti podataka. Da bi jasnije objasnili na šta se tu tačno misli posmatrajmo relaciju (1.8). Primijetimo da su vremenski odbirci signala linearna kombinacija koeficijenata transformacionog domena. Upravo zbog toga, možemo zaključiti da se i proizvoljan skup dijela odbiraka u vremenskom domenu može posmatrati kao skup mjerenja. Na taj način, originalna ideja da se mjerenja uzimaju po tačno, unaprijed odred⁻enoj strategiji, biva proširena na slučajeve kada su ista rezultat fizičke nedostupnosti. Kako je i ovo vrlo čest slučaj u mnogim aplikacijama, to je za posljedicu imalo i intenzivan razvoj ove oblasti i u tom pravcu, posebno u inženjerskim istraživanjima, za razliku od klasičnog pristupa koji je svojstveniji

81

matematičkim naukama. Za vektor, y koji predstavlja linearnu kombinaciju elemenata vektora X kažemo da su mjerenja signala. Matrica A ima centralno mjesto u CS i naziva se mjerna matrica. Njena konstrukcija i ispitivanje njenih osobina predstavljaju prvi pravac istraživanja u CS, dok dobijanje vektora originalnog signala X iz vektora y predstavlja drugi pravac istraživanja. Primijetimo da vektor y ima manji broj elemenata od vektora X te stoga nije moguće izvršiti rekonstrukciju inverzijom i matričnim množenjem. Istaknimo još jednom dva ključna pravca razvoja CS: • Model za akviziciju podataka pod kojim podrazumijevamo istraživanja u pravcu dobijanja mjerenja. • Problem rekonstrukcije originalnog signala korišćenjem dostupnih mjerenja. Ova disertacija će se dominantno baviti drugim pravcem, odnosno, rekonstrukcijom signala. U nastavku ove sekcije će biti objašnjeni ključni pojmovi i definicije vezane za oblast CS, kao što su pojam rijetkosti, mjernih matrica i njihovih osobina kao i rekonstrukcije signala. 1.3.1 Rijetkost signala Objasnimo sada detaljnije jedan od najvažnijih pojmova kada je CS u pitanju, pojam rijetkosti signala. Posmatrajmo niz od N koeficijenata transformacionog domena signala označenihsaX(k),gdjejek=0,1,...,N-1.PosmatrajmodaljeskupodKpozicijaoznačen saK=

{k1,k2,...,kK},pričemujeKpodskupnizapozicijasvihkoeficijenata K = {k1, k2, . . . kK } ⊂ {0, 1, . . . , N − 1}. Pretpostavimo da ovaj signal ima samo K vrijednosti, na pozicijama K, koje su različite od 0

X (k) = 0 za k \in / K, odnosno X (k) \neq 0 za k \in K.

Broj nenultih koeficijenata signala se često označava sa N -1 $||X||0 = K = \sum |X(k)|0, k=0$ gdje je

|X(k)|0 = 0 za |X(k)| = 0, odnosno |X(k)|0 = 1 za $|X(k)| \neq 0$, Za signal X

koji zadovoljava prethodno navedene uslove, da mu je broj nenultih koeficijenata mnogo manji od ukupnog broja koeficijenata (IIXIIO = K « N), kažemo da je rijedak (eng. sparse, K-sparse). Upravo ova osobina je neophodna da bi se CS mogao primijeniti na nekom signalu. Na sreću, pokazalo se da ogroman broj realnih signala koji se koriste u aplikacijama zadovoljava ovo svojstvo u nekom od transformacionih domena. Na slici 1.5 je prikazana sparse priroda fotografija (slika). Na slici gore lijevo je prikazana originalna slika. Na slici gore desno je 20% najmanjih koeficijenata u dvodimenzionom DCT domenu postavljeno na 0. Ova procedura je urad⁻ena za sva tri kanala (R,G,B) pojedinačno. Ista procedura poništavanja koeficijenata je odrad⁻ena i za fotografije prikazane u donjem redu. Kod donje lijeve slike je 50% koeficijenata postavljeno na 0, dok je kod desne čak 90% koeficijenata postavljeno na 0. Ova osobina slika je i iskorišćena u mnogim kompresionim algoritmima koji se koriste za slike, kao što je JPEG algoritam, npr. Vidjeli smo da su slike, zbog svoje osobine da su rijetke u 2D-DCT domenu, izuzetno pogodne za razne primjene CS. Slična svojstva važe i za mnoge druge signale u odgovarajućim transformacionim domenima. 1.3.2 Mjerenja i mjerne matrice Mjerenja y u oblasti CS predstavljaju ključni elemenat koji težimo da dobijemo od originalnog signala, a koji kasnije koristimo kao polaznu tačku pri rekonstrukciji originalnog signala. Ona predstavljaju linearnu kombinaciju elemenata originalnog signala

1

- 1). Veza izmed⁻u originalnog signala i mjerenja se takod⁻e može predstaviti u matričnoj formi kao y = AX, odnosno u punom obliku Slika 1.5: Sparse slike u 2D-DCT domenu: gore lijevo - originalna slika; gore desno - 20% koeficijenata ima vrijednost 0; dolje lijevo - 50% koeficijenata ima vrijednost 0; dolje desno - 90% koeficijenata ima vrijednost 0. y(0) a0(0) a1(0) . . . aN−1(0) X (0) ∫ y(1) ∫∫ a0(1) a1(1) aN−1

(1) $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

 $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ Za matricu A kažemo da je mjerna matrica. Njeni elementi se u opštem slučaju označavaju sa ak(n), gdje indekse k i n koristimo da označimo redne brojeve kolona i vrsta, respektivno. Pravilan odabir i konstrukcija mjerne matrice su od velikog značaja za uspješnu rekonstrukciju signala. Uslov koji sve mjerne matrice moraju da zadovolje jeste da u njima bude uključena slučajnost, bilo kroz vrijednosti elemenata ili kroz poziciji odabranih vrsta za slučaj da je matrica dobijena iz neke determinističke matrice. Upravo zbog toga, dominantno korišćena mjerna matrica u CS jeste ona kod koje elementi imaju Gausovu raspodjelu ak(n)= $\sqrt{f(0,1)}$, 1 M Normalizacija sa faktorom 1/ M je izvršena da bi bili zadovoljeni uslovi ortonormalnosti $\sqrt{M-1}$ E {

 $n=0 \sum a2k$ (n) = 1, } i M -1 E{ n=0 $\sum ak$ (n) ai (n) = 0

za i ≠ k. } Često je u upotrebi i Bernulijeva slučajna matrica, čiji elementi imaju vrijednost 1/ M i √-1/ M, a kod koje se slučajnost ne ogleda u vrijednostima elemenata već u njihovom √rasporedu. Prethodno navedene matrice se mogu koristiti za sve signale koje ima smisla koristiti u CS. Med⁻utim, u praksi se često koriste i matrice koje su specifične za odred⁻ene grupe signala. Takve su npr. parcijalne matrice. Vidimo da matrice imaju dvojaku primjenu u CS. One povezuju dva domena signala i tu govorimo o transformacionim matricama, dok sa druge strane mjerna matrica koju smo označili sa A povezuje rijetki signal i mjerenja. Posebna pažnja se posvećuje kreiranju mjerne matrice [23, 24], jer ideja CS jeste da se za odred⁻enu grupu signala formira jedinstvena mjerna matrica. Algoritmi za kreiranje mjernih matrica najčešće rade na principu optimizacije nekih od parametara kao što su izometrija i koherencija. U nastavku će biti prezentovana parcijalna matrica za signale rijetke u DFT domenu, a nakon toga objašnjene dvije pomenute osobine mjernih matrica: svojstvo ograničene izometrije - RIP i indeks koherencije. Parcijalna DFT matrica Kako će u radu posebna pažnja biti posvećena rekonstrukciji signala rijetkih u DFT domenu, čiji je skup mjerenja dobijem slučajnim odabirom vremenskim odbiraka signala, ovdje ćemo detaljno objasniti mjernu matricu koja se koristi u tom slučaju. Vremenski i DFT domen signala koji je rijedak u DFT domenu su povezani transformacionom DFT matricom, odnosno inverznom DFT matricom. Kako su vremenski odbirci signala linearne kombinacije koeficijenata u transformacionom domenu, to se vremenski odbirci mogu posmatrati kao mjerenja. Sa stanovišta matrica, svako od mjerenja je dobijeno množenjem vektora X sa odgovarajućom vrstom inverzne DFT matrice. Kako vrijednost elemenata u inverznoj DFT matrici ne uključuju potrebnu slučajnost koju smo ranije pomenuli, to se u ovom slučaju ista obezbjed⁻uje slučajnim odabirom vrsta. Ovo za posljedicu ima slučajne vremenske odbirke signala. Drugim

riječima, ukoliko želimo da vremenske odbirke signala koristimo kao mjerenja, potrebno je da slučajno izaberemo set odbiraka/vrijednosti signala koji će predstavljati mjerenja. Pretpostavimo da signal x(n) ima N vrijednosti, pri čemu je n =

0, 1, ..., N - 1. Označimo sa N skup svih odbiraka signala x(n), N = {0, 1, ..., N - 1}.

Skup od NA odbiraka signala x(n) na slučajnim pozicijama označimo sa NA = {n1, n2, ..., nNA} pri čemu je NA podskup skupa N, NA \subset N. Vektor slučajnih vrijednost signala x(x) predstavlja u ovom slučaju mjerenja signala y = [x(n1), x(n2), ..., x(nNA)]T jer je y = AX, odnosno x(n1) a0(n1) a1(n1) ... [x(n2)] = [a0(n2) a1(n2)] x(nNA) [a0(nNA) a1(nNA)][a0(nNA) a1(nNA)] [a0(nNA) a1(nNA)] [a0(nNA)] [a0(nNA)]

1 1 e j2πn2	/Ne jź	2πn2	(N−1)/N] (1.	11) NA	е	j2πnNA	/N e	j2πnNA	48
(N-1)/N)									

Za signale koji su rijetki u nekom drugom domenu se koriste druge, odgovarajuće, parcijalne matrice. Svojstvo ograničene izometrije - RIP Za matricu A kažemo da zadovoljava svojstvo izometrije ako je zadovoljen uslov IIAXII22 = EA IIXII22 , gdje je IIXII22 =

$|X(0)|2 + |X(1)|2 + \cdots + |X(N-1)|2$

a EA zavisi od mjerne matrice A, a ne zavisi od posmatranog signala X. Ukoliko transformaciona matrica zadovoljava svojstvo izometrije, tada možemo uzimajući u obzir da signal X nema nultu energiju, pisati: EA 1 ∥AX∥22 – ∥X∥22 ∥X∥22 = 0. (1.12) U CS se umjesto potpune izometrijle matrice koristi oglraničena izometrija koja podrazumijeva da razlika E1A ∥AX∥22 – ∥X∥22 bude dovoljno mala u odnosu na energiju signala. Tada izraz (1.12) postaje EA 1 ∥AX∥22 – ∥X∥22 | | ∥X∥22 ≤ δ . (1.13) Kako se u CS koriste rijetki signali, možemo reći da K -rijetki signal XK zadovoljava ograničeno | svojstvo izometrije sa konstantom δK ako je zadovoljen uslov | | EA 1 ∥AK XK ∥22 – ∥XK ∥22 ≤ δK , (1.14) za sve moguće rasporede nenult|ih koeficijenata u vektor|u X. Kako svakom rasporedu nenultih koeficijenata u vektoru X odgovara posebna matrica AK, očigledno je da je potrebno ispitati svojstvo ograničene izometrije za NK mogućih matrica AK da bi smo zaključili da li je RIP zadovoljen. Provjera svih pomenuti(h)matrica je izuzetno zahtjevan kombinatorni problem, čije je rješavanja u razumnom vremenu nemoguće sprovesti za bilo koji signal iole većih dimenzija. Na primjer, za N = 256 i K = 30 broj kombinacija je reda veličine 1039, dok je za N = 1024 i K = 50 broj kombinacija reda veličine 1085. Današnji procesori radi na taktovima reda GHz. Pretpostavljajući da se jedna matica može ispitati u okviru jednog takta, za ispitivanje svih matrica za slučaj N=1024 i K=50 bi bilo potrebno oko 1069 godina. Takođ[−]e svojstvo ograničene izometrije mora da bude zadovoljeno i za svaki vektor X rijetkosti manje od K. lako je RIP nemoguće provjeriti u razumnom vremenu, pokazalo se da mnoge mjerne

1

matrice koje se koriste u CS, a koje su pomenute u 1.3.2, zadovoljavaju ovo svojstvo. Pojam RIP i njegov značaj za oblast CS su dali Candes i Tao u [10]. Oni su u ovom radu prvi razmatrali rekonstrukciju sparse signala vodeći računa i o šumu koji može biti prisutan u mjerenjima. Pokazali su da se za mjerenja dobijena upotrebom mjernih matrica koje zadovoljavaju svojstvo RIP, može koristiti konveksna ℓ1 norma u rekonstrukciji. Ovo njihovo otkriće je dalo vrlo bitnu potvrdu da se nakon procesa rekonstrukcije ne može dobiti neko drugo rješenje, sem onoga koje odgovara stvarnom signalu. Jedna od mogućih interpretacija ovog njihovog otkrića bi mogla biti: Vektor X dužine N koji je K-sparse može biti jednoznačno rekonstruisan iz NA (NA ≪ K) mjerenja

y = AX, ako je mjerna matrica A takva da sve podmatrice A2K zadovoljavaju 2K svojstvo ograničene izometrije sa konstantom $0 \le \delta 2K < 1$ za sve kombinacije 2K kolona od mogućih N.

Bitno je istaći da RIP ne definiše minimalne potrebne uslove, već one koji garantuju jednoznačnu rekonstrukciju. Mnogo je veći broj signala koji bi se zaista jednoznačno rekonstruisali nego što to predvid⁻a RIP. Ipak, i dalje ne postoje uslovi koji bi ujedno definisali minimum uslova za rekonstrukciju a da rješenje bude jednoznačno. Takod⁻e, Davenport je u svojoj doktorskoj disertaciji izveo izraz koji povezuje RIP osobinu matrice sa tipom i dimenzijama signala. Ta teorema koja je i dokazana u njegovoj disertaciji glasi [25]: Potreban broj mjerenja za matricu AM×N koja zadovoljava RIP za 2K sparse signale sa konstantom δ ∈ 0, 12 je (] M ≥ CK log N , () K gdje konstanta C uzima vrijednost C ≈ 0, 28. Pored ovih pristupa, postoji više drugih različitih pravaca u analiziranju mogućnost rekonstrukcije, pa samim tim i niz različitih formulacija. Neki od tih pravaca se oslanjaju na ispitivanja nekih drugih svojstava matrica kao što su: rank, spark i koherencija. Indeks koherencije matrice U sekciji 1.3.3 smo vidjeli da se pri rekonstrukciji signala koristi matrica AH A. Uzimajući u obzir da kolone matrice A mogu biti nenormalizovane, treba imati na umu da se tada koristi matrica E1A AH A. Pojam indeksa koherencije matrice u CS su uveli Donoho i Elad. Za mjernu matricu A ovaj indeks je definisan kao maksimalna apsolutna vrijednost normalizovanog skalarnog proizvoda dvije kolone matrice ili kao maksimalna apsolutna vrijednost normalizovanih nedijagonalnih elemenata matrice E1A AH A μ = max|μ(m,k)|, za m ≠ k pri čemu elementi matrice E1A AH A uzimaju vrijednosti μ (m, k) = ΣMi=-01 |ak(i)|2 iΣ=0 am(i)a*k(i). 1 M-1 (1.15) (1.16) Kako su Donoho i Elad pokazali [26], ovaj indeks je vrlo bitan pri konstrukciji mjernih matrica. Jedna od fundamentalnih matematičkih ideja koja stoji iza CS a koje se odnosi na ovaj indeks glasi: Ako je K < 1+ 1 1 2 , (μ) tada za svaki vektor mjerenja y postoji najviše jedan K-rijedak signal X takav da je v = AX. Idealan slučaj sa stanovišta mogućnosti rekonstrukcije bi bio da je ovaj indeks 0, med⁻utim, Welch je još 1974. godine pokazao da ovaj indeks ne može biti proizvoljno mali [27], i da važi nejednakost koja odred⁻uje donju granicu za ovaj indeks N − M μ≥ √ M(N − 1) . (1.17) Slično kao i kod RIP, i ovaj indeks se često koristi pri dizajniranju mjernih matrica, gdje se raznim optimizacionim metodama pokušava kreirati matrica sa što je moguće manjim indeksom koherencije. Welch-ova donja granica Kako je indeks koherencije, uz svojstvo RIP, jedan od najbitnijih parametara mjerne matrice, ovdje ćemo prikazati dokaz za Welchovu donju granicu ovog indeksa (1.17), koji je 1974. godine dao Lloyd Richard Welch. Krenimo od definicije traga matrice koji predstavlja sumu elemenata na glavnoj dijagonali. Posmatrajući matricu E1A AH A, možemo pisati Tr 1 AH A = Σ μ (m, m) = N N (1.18) { EA } m=1 Trag posmatrane matrice je takod⁻e jednak i sumi njenih sopstvenih vrijednosti. Imajući u vidu da je posmatrana matrica i Gramova matrica čiji rank može imati vrijednost M u

16/02/2021

Similarity Report

krajnjem slučaju (ne može imati veću vrijednost), to za posljedicu ima činjenicu da posmatrana matrica ima samo M nenultih sopstvenih vrijednosti. Iz svega navedenog slijedi relacija Tr { ΕΑ ΑΗ Α = iΣ=1 λi. 1 M (1.19) } I za energiju posmatrane matrice važi da je jednaka sumi kvadrata sopstvenih vrijednosti. Uzimajući u obzir da su vrijednosti elemenata posmatrane matrice definisane sa (1.16), to dalje važi 1 AH A 2 = Σ Σ μμ (m, k)|2 = Σ λi2, N N M (1.20) gdje F označava Frobeniju || || sovu norm || u (Euklidovu normu) matrice. Kvadriranjem izraza (1.18) || || EA F m=1 k=1 i=1 dobijamo N2 = Tr AHA 1 2 M 2 {EA = Σ λi) . (1.21) (}) (i=1 Prethodna relacija se koristeći Švarcovu nejednakost (λ1 + λ2 + ... + λM)2 λ12 + λ22 + ... + λM2 ≤ M transformiše u N2 ≤ M ∑ λi2 = M M 1 2 E AH A , i=1 A F odnosno N N || || N2≤M ∑ ∑|µ(m,k)|2. m=1 k=1 Dvostruku sumu sa desne strane prethodne relacije možemo posmatrati kao sumu kvadrata vrijednosti elemenata na glavnoj dijagonali sabranu sa sumom kvadrata vrijednosti ostalih elemenata. Uzimajući u obzir da elementi na glavnoj dijagonali uzimaju vrijednost 1, a da je maksimalna apsolutna vrijednost nekog od ostalih elemenata jednaka indeksu koherentnosti (1.15), to se prethodna relacija može zapisati kao N 2 \leq M (N + N (N - 1) μ 2). Jednostavnim sred⁻ivanjem prethodne relacije dolazimo do Welch-ove donje granice vrijednosti koju može imati indeks koherentnosti N – M µ≥ √ M(N – 1) . Iako je prethodna relacija nastala još 1974. godine, ona i danas ima značajnu ulogu u teoriji CS koja se bavi kreiranjem i analizom mjernih matrica. 1.3.3 Rekonstrukcija signala Pod rekonstrukcijom signala se podrazumijeva procedura za dobijanje kompletnog skupa od N vrijednost originalnog signala x(n) ili X (k), koristeći skup od NA mjerenja v(n). Jasno je da ova rekonstrukcija ne bi bila jednoznačna i moguća bez dodatnih uslova. Kao dodatni uslov se stoga koristi činjenica da rekonstruisani signal (njegova sparse prezentacija) ima što je moguće manji broj nenultih koeficijenata. Drugim riječima, rekonstruišemo najrjed[−]i mogući signal tako da sistem jednačina (1.10) bude zadovoljen min IIXII0 uz uslov v = AX. (1.22) Postoji mnoštvo algoritama koji se bave rekonstrukcijom sparse signala. Ovaj problem je posljednjih godina posebno izražen u oblasti CS, ali je većina algoritama koji se koriste u CS nastala mnogo ranije i služila je za rješavanja mnogih drugih problema iz oblasti kao što su statistika, geofizika, kompjuterska nauka... Postoji nekoliko pristupa u rješavanju ovog problema a to su: • Direktno pretraživanje - Ovaj pristup podrazumijeva da krećući od svih mogućih kombinacija, u svakom koraku algoritma smanjujemo broj mogućih rješenja i da na taj način dod⁻emo do tačnog rješenja. Ove algoritme je još uvijek moguće primijeniti samo na problemima malih dimenzija [28]. • Konveksna optimizacija - Cilj konveksne optimizacije je da koristeći konveksnu ℓ1 normu, pronad⁻e minimum te norme. Pod posebnim uslovima koje su Candes i Tao razmatrali u [10] taj će minimum odgovarati minimumu ℓ0 norme koja promoviše sparsity signala. • Pohlepni pristup (eng. Greedy algorithms) - Ovi algoritmi iterativnim putem dod⁻u do rješenja, a u svakoj iteraciji algoritam od mnoštva stanja bira ono koje najviše utiče na željenu funkciju koju želimo minimizovati. Ovi algoritmi indirektno koriste ℓ normu u rekonstrukciji. • Statistički algoritmi (Bayesian pristup) - Rade na bazi pretpostavki pozicija koeficijenata koje treba rekonstruisati i posebnim metodama pronalazi pozicije i vrši rekonstrukciju [29]. Prethodno navedena podjela je izvršena na osnovu načina rekonstrukcije, ti, prirode rada algoritama koji pripadaju odred⁻enim grupama. Med⁻utim, još jedna često korišćena podjela, nešto opštija od prethodno navedene, jeste na • Rekonstrukcija upotrebnom ℓ0 norme • Rekonstrukcija upotrebnom ℓ1 norme U nastavku će biti objašnjena jedna i druga grupa algoritama Rekonstrukcija signala - 10 norma Prva ideja koja se nameće za rekonstrukciju signala rijetkih u transformacionom domenu jeste upotreba ℓ norme, koja po svojoj definiciji broji nenulte vrijednosti, odnosno predstavlja rijetkost. Naime, pokušavamo pronaći najrjed⁻i signal X koji pomnožen sa mjernom matricom A daje dostupne odbirke y min IIXIIO uz uslov y = AX. (1.23) Rijetkost signala X, odnosno X(k) se ogleda u činjenici da je X(k) = 0 za k ∈/ K = {k1,k2,...kK},pričemuvažidajeK={k1,k2,...kK}⊂{0,1,...,N−1},kaoiK≪N. Direktna minimizacija {0 norme

naravno nije moguća, jer ova norma nije konveksna. Med⁻utim, minimizacijom greške M-1 e2 = \sum i=0 2 y(i)- \sum ak(i)X(k) , k∈K odnosno rješavajući izraz | | min lly - AK XK ll22 = min (y - AK XK)H (y - AK XK) { dolazimo do formule za rekonstrukciju signala } X = (AHKAK)-1AHKy, (1.24) gdje je matrica AK dobijena iz matrice A kada su zadržane kolone na pozicijama iz skupa K, dok su sve ostale kolone uklonjene [3]. Prethodna relacija se može zapisati i kao X = pinv (AK) y, gdje je sa pinv (AK) označena pseudo inverzna matrica matrice AK . Iako na prvi pogled djeluje da je rekonstrukciju veoma lako izvršiti, primijetimo da je prije svega potrebno odrediti skup pozicija nenultih koeficijenata K, a tek nakon toga možemo izvršiti rekonstrukciju signala koristeći izraz (1.24). Očekivanje da je skup pozicija nenultih koeficijenata signala X (k) poznat, nije realno. Upravo zbog toga su i razvijeni razni algoritmi čiji je cilj da prvo pronad⁻u skup pozicija nenultih koeficijenata, a da nakon toga jednostavnom upotrebom (1.24) izvrše rekonstrukciju [30]. Ovaj način rekonstrukcije, koji koristi činjenicu da je signal sparse i samim tim rekonstruiše samo koeficijente na odred-enim pozicijama, dok ostale postavlja na vrijednost 0, predstavlja jedan pristup u rješavanju problema rekonstrukcije. Iako on ne vrši minimizaciju ℓ0 norme, sama činjenica da se njima rekonstruišu samo odred⁻eni koeficijenti dovodi do zaključka da su ovo algoritmi koji pri rekonstrukciji koriste 🕴 normu. U nastavku će biti opisan OMP (Orthogonal Matching Pursuit) algoritam koji je najpoznatiji CS algoritam baziran na ℓ0 normi. OMP algoritam Jedan od prvih algoritama koji se koristio u CS je OMP algoritam (engl. Orthogonal Matching Pursuit). Ideja za OMP algoritam datira još iz '50-ih godina kada su se slične metode koristile u selekciji varijabli u regresiji. Kao osnovne reference u literaturi za ovaj metod smatraju se [30, 31]. Ideja ovog algoritma jeste da se iterativno estimira vrijednosti vektora X, modifikujući jednu ili više vrijednosti ovog vektora u cilju poboljšanja aproksimacije vektora mjera y. Algoritam se može opisati nizom koraka: Korak 1: Postavimo skup indeksa Ω0 = 0, ostatak r0 = y, i postavimo brojač na i = 0. Korak 2: Tražimo onu kolonu ni matrice A koja je najviše korelisana sa ostatkom: ni = arg max |(ri-1, an)|, n i proširimo skup indeksa Ωi = Ωi-1 ∪ {ni} . Korak 3: Nad~emo koeficijente koji najbolje aproksimiraju vektor mjera v sa kolonama odred~enim do sada (definisane skupom indeksa Ω): Xi = argmuin y-AΩiu 2 Korak 4: Osvježimo ostatak: || || || || ri=y-AΩiXi Nakon ova četiri koraka povećamo i za jedan i ponavljamo korake od 2-4 dok neki od kritgrijumazazaustavljanjenebudeispunjen. Korak5:IzlazizalgoritmajerijetkisignalXkojizadovoljava: X(n) = Xi(n) za n ∈ Ωi (1) 0 za ostalo n Kriterijuma za stopiranje algoritma može (biti više , ali se izdvajaju dva: • Obustaviti izvršavanje algoritma nakon fiksnog broja iteracija, koji je moguće primijeniti kada unaprijed znamo broj nenultih koeficijenata rijetkog signala koji želimo estimirati • Obustaviti izvršavanja algoritma kada detektujemo da ostatak ima malu energiju ∥ri∥2 ≤ ε, gdje je ε neki unaprijed definisani prag. Rekonstrukcija signala - 🕴 norma Vidjeli smo da se kao prvo i najlogičnije rješenje za rekonstrukciju rijetkih signala nameće 🕴 minimizacija definisana sa (1.22). Kako minimizaciona funkcija II-IIO nije konveksna, to proces minimizacije upotrebom ove funkcije može biti vrlo težak za rješavanje. Postoje slučajevi kada je čak nemoguće naći i približnu aproksimaciju minimuma. Rješenje za ovo može biti zamjena minimizacione funkcije konveksnom II·II1 funkcijom koja može biti riješena, drugim od ranije poznatim, algoritmima za konveksnu optimizaciju. To znači da se standardna formulacija za rekonstrukciju signala u CS

min IIXII 0 uz uslov y = AX. pod mijenja sa minIIXII 1 uz uslov y = AX.

16/02/2021

Similarity Report

Uvod⁻enjem konveksne norme, računski vrlo zahtjevan problem smo sveli na lako rješiv. Imajući u vidu da je cilj rekonstruisati signal najmanje moguće rijetkosti (odgovara ℓ0 normi), pitanje je ima li smisla koristiti ℓ1 normu u minimizaciji. Ipak, sem intuitivnih razloga, opravdanje za ovo se može pronaći i u daljoj prošlosti. Naime, Švedski matematičar Arne Carl-August Beurling je još 1938. godine u svojim radovima koji su se bavili ekstrapolacijom Furijerove transformacije, koristio ℓ1 normu u svrhu podsticanja rijetkosti [32]. Takod⁻e, Benjamin Franklin Logan je 1965. godine u svojoj doktorskoj disertaciji pokazao da se spektralno ograničeni signal može tačno rekonstruisati ukoliko je proizvoljna smetnja prisutna na malom intervalu [33]. I u ovom slučaju se rekonstrukcija vršila traženjem spektralno ograničenog signala koji je u pogledu ł norme najbliži posmatranom signalu koji treba rekonstruisati. I ovdje se pokazalo da je 🕴 norma pogodna za greške koje karakteriše svojstvo rijetkosti. Svoju punu upotrebu ℓ1 minimizacija je dostigla '70-ih i '80-ih godina prošlog vijeka sa ekspanzijom kompjuterskog hardvera i procesorske moći. Neke od prvih aplikacija toga perioda su pokazale da se odred-ene grupe geofizičkih signala mogu rekonstruisati samo iz svojih komponenti na visokim frekvencijama, pri čemu je i u ovom procesu korišćena pomenuta minimizacija. Osim u obradi signala, ove tehnike se koriste i u teoriji statistike pri odabiru varijabli za proces regresije, ali i u mnogim drugim oblastima. Takod⁻e, mjere koncentracije su se intenzivno koristile u vremensko-frekvencijskoj obradi signala. Najstarija i jedna od najčešće korišćenih mjera bila je zasnovana na odnosu normi drugog i četvrtog reda. Ipak, pokazalo se da je za mjerenje koncentracije moguće koristiti i lpnorme, odnosno I1-normu [34]. Na ovaj način je prevazid⁻en problem favorizovanja komponenti koje imaju osobinu pikova. Zbog svega navedenog, više je nego opravdana bila pretpostavka da se ova mjera može koristiti u procesu rekonstrukcije sparse signala, a sa razvojem teorije CS, dokazano je da ova mjera proizvodi identičnno rješenje kao i nekonveksna ₹0 norma ukoliko je zadovoljen uslov 1 1 − δ2K ≤ EA ∥A2K X2K ∥22 ∥X2K ∥22 ≤ 1 + δ2K , pri čemu je 0 ≤ δ2K < 2 − 1. √ Kao dodatni dokaz ovim pretpostavkama, izveden je jedan jednostavni eksperiment, čiji su rezultati prikazani na slici 1.6 [35]. Za signal koji je rijedak u DFT domenu, smo vrijednost jednog odbirka u vremenskom domenu varirali u oba smjera oko njegove tačne vrijednosti. Mjera signala je prikazana kao funkcija vrijednosti varirajućeg odbirka. Korišćene su 10 i 1/2, 11 i 2 norme na graficima pod a), b), c) i d) respektivno. Primijetimo da su norme ℓ0, ℓ1/2 nekonveksne, ali se minimum mjere poklapa sa tačnom vrijednošću odbirka. Mjera ℓ2, je 1 mjera 0.5 mjera norma 10 0 a) -5 0 5 vrijednost odbirka 1 0.5 norma 11 0 c) -5 0 5 vrijednost odbirka mjera mjera 1 0.5 norma l1/2 0 b) -5 0 5 vrijednost odbirka 1 0.5 norma l2 0 d) -5 0 5 vrijednost odbirka Slika 1.6: Mjera kao funkcija vrijednosti nedostajućeg odbirka. Tačna vrijednost nedostajućeg odbirka označena je vertikalnom linijom, dok je minimum mjere označen kružićem. Vrijednost mjere je normalizovana. konveksna, med⁻utim njen minimum se ne poklapa sa tačnom vrijednošću odbirka, dok je ℓ1 norma i konveksna i njen minimum odgovara tačnoj vrijednosti odbirka koji smo varirali. Ovo je još jedan jednostavni dokaz da ℓ1 norma podstiče rijetkost pri rekonstrukciji, imajući u vidu da netačne vrijednosti posmatranog odbirka utiču na smanjenje rijetkosti. LASSO minimizacija i ISTA algoritam Standardni CS minimizacioni problem predstavljen u obliku ₹1 norme min IIXII1 uz uslov y = AX, a za koji je dokazano da se može koristiti u rekonstrukciji jer pod odred⁻enim uslovima proizvodi isto rješenje kao ℓ0 norma, se takod⁻e može zapisati u Lagranžovoj formi kao F (X) = IIy - AXII22 + λ IIXII (1.25) gdje je F(X) funkcija koju je potrebno minimizovati. Desni sabirak sume λ IIXII1 je zapravo izmijenjen u odnosu na standardni u Lagranžovoj minimizaciji a koji glasi λ IIXII22, a sve u cilju promovisanja rijetkosti signala II·II1 a ne energije II·II22. Rekonstrukcija se, dakle, dobije rješavajući X = arg mXin IIy - AXII22 + λ IIXII1. (1.26) Prethodna formulacija je poznata kao LASSO (least absolute selection and shrinking operator) {} minimizacija. Parametar λ u prethodnoj relaciji služi da održi balans izmed⁻u prvog člana sume IIy – AXII22 koji odgovara

grešci i drugog koji je zadužen za rijetkost u (1.26). Imajući u vidu postojanja l1 norme, jasno je da prethodno formulisanu relaciju ne možemo riješiti u zatvorenoj formi kao što je to slučaj sa standardnom Lagranžovom formulacijom u kojoj i desni sabirak minimizuje energiju $\lambda \|X\|$ 22. Rješenje prethodnog problema je moguće postići koristeći iterativnu proceduru. Posmatrajmo ne-negativnu vrijednost G(X) = (X-XR)T(α I-ATA)(X-XR), koja ima nule na pozicijama rješenja problema XR. Dodajmo ovaj član funkciji F(X) ne mijenjajući vrijednost rješenja minimizacione procedure. Konstanta α ima vrijednost veću od maksimalne vrijednosti sopstvenog vektora matrice ATA, od čega i potiče činjenica da se radi o ne-negativnom članu. Sada, nakon sabiranja F(X) i G(X) imamo H(X) =F(X)+(X-XR)T(α I-ATA)(X-XR). Izjednačavajući gradijent H(X) sa nulom ∇ H (X) = ∂ XT = 0 ∂ H (X) dolazimo do X+ λ 2 α sign{X} = α 1 AT (y - AXR) + XR. Iz prethodne relacije slijedi iterativna formula XR+1+ sign{XR+1} = λ 1 2 α 2 α AT (y - AXR) + XR. Ukoliko na svaku vrijednost vektora XR+1 primijenimo soft thresholding pravilo

 $x = soft(y, \lambda) = sign(y)max\{0, |y| - \lambda$

}, koje predstavlja rješenje jednačine oblika x + λ sign(x) = y dolazimo do konačne relacije za iterativnu rekonstrukciju Xs+1=soft(α1 AT (y − AXs) + Xs, λ). 2α (1.27) (1.28) Prethodno opisani postupak predstavlja iterativni soft thresholding algoritam za LASSO (1.26) minimizaciju [3, 36]. Primal dual interior point metod Za rekonstrukciju signala u CS jedan od često korišćenih softverskih paketa je ℓ1-magic [37]. Ovaj algoritam implementira primal dual interior point metod namijenjen za linearno programiranje [37–39]. Kratki osvrt na ideju koja leži iza ovog algoritma je dat u nastavku. Forma standardnog linearnog programa se može zapisati u obliku: min (c0, X) uz uslove y = AX X fi(X) ≤ 0. gdje je svaka od funkcija fi(X) = ⟨ci,X⟩ + di, i = 1,2,...,M linearna za ci ∈ RN, di ∈ R. U optimalnoj tački, postojaće dva dualna vektora v* ∈ RK i λ* ∈ RM koji zadovoljavaju Karush-Kuhn-Tuckerove uslove: c0 + AT v * + ∑ λ i*ci = 0 λ i* fi

 $(X^{\sim}) = 0 i AX^{\sim} = y$ fi $(X^{\sim}) \le 0 i = 1, 2, ..., M$

i = 1, 2, ..., M i = 1, 2, ..., M Algoritam pronalazi optimalni dual vector rješavajući sistem nelinearnih jednačina. U tački unutrašnjosti (interior point), sistem je linearizovan i njegovim rješavanjem dolazimo do željenog vektora X. 1.4 Greška slučajno odabranih nerijetkih signala sa pretpostavkom rijetkosti Jedan od originalnih doprinosa ove teze biće predstavljen u ovoj sekciji. Imajući u vidu da se rad bavi teorijom CS, a ne gradijentnim algoritmima, to će dobijeni rezultati biti predstavljeni u ovom poglavlju. Riječ je o formuli koja povezuje očekivanu energiju greške u rekonstruisanim koeficijentima sa energijom preostalih koeficijenata u nerijetkom signalu i energijom greške u mjerenjima [6]. Za početak podsjetimo se kako od signala x(t) trajanja T i njegovih odbiraka x(n Δ t) koji zadovoljavaju teoremu o odabiranju, možemo doći do DFT koeficijenata. Naime, periodično produženje ovog signala se može zapisati kao [3] x(t) = N 1 N Σ -1X(k)ej2 π kTt, (1.29) k=0 gdje su X (k) koeficijenti Furierove transformacije koji su jednaki DFT koeficijentima ukoliko koristimo oznaku x(n) za x(n Δ t) i Δ t = T /N kao korak odabiranja. Kada je zadovoljena teorema o odabiranju važi i N T N-1 X (k) = T $\int 0 x(t)e- j2\pi k$ Tt dt = \sum x(n)e- j2 π k Nn . (1.30) n=0 Posmatrajmo sada signal i njegovu DFT X (k) dužine N. Pretpostavimo da je signal odabran u

11

slučajnim trenucima, gdje su odbirci signala x(tn), pri čemu važi 0 ≤ tn < T . Specijalni slučaj uniformnog odabiranja, kada su trenuci tn cjelobrojni umnošci Δt, je analiziran u [40]. Pretpostavimo dalje da su svi odbirci signala, zahvaćeni bijelim šumom ε(tn), varijanse σε2. Broj dostupnih odbiraka signala (mjerenja) je NA. Koeficijenti X(k) su rekonstruisani pod pretpostavkom da je signal K-rijedak. Generalne granice za grešku rekonstrukcije za slučaj nerijetkih signala rekonstruisanih sa pretpostavkom rijetkosti su date u [41], dok su granice greške rekonstrukcije rijetkih signala kod algoritama za brzo računanje Furijeove transformacije (fast Fourier transform - FFT) date u [42, 43]. Tačna relacija za očekivanu kvadratnu grešku u koeficijentima rekonstruisanog nerijetkog signala , koji je rekonstruisan pod pretpostavkom rijetkosti je data u vidu teoreme koja je dokazana u tri koraka. U prvom koraku je posmatran slučaj K-rijetkog signala bez šuma. U drugom koraku je dodat šum u mjerenja, dok je u trećem uvedeno proširenje u pogledu rijetkosti, i analiziran je slučaj nerijetkih signala. U nastavku slijedi pregled oznaka radi jednostavnijeg praćenja, a nakon toga definicija i dokaz teoreme. Oznake: •

X = [X (0), X (1), ..., X (N - 1)]T - vektor koeficijenata signala (DFT

domen); • A – mjerna matrica sa elementima ank = exp(j2πktn/T), 1 N (1.31) gdje je k =

 $0, 1, \dots, N-1$ i $n = 1, 2, \dots, NA; \cdot y = [x(t1), x(t2), \dots, x(tNA)]T$

= AX – vektor mjerenja; • K = {k1,k2,...,kK} – skup estimiranih pozicija nenultih koeficijenata K-rijetkog signala X; • XK = [X(k1),X(k2),...,X(kK)]T – stvarne vrijednosti koeficijenta signala na pozicijama k ∈ K; • XK0 – jednak je vektoru XK na pozicijama korišćenim za rekonstrukciju XK0(kp) = XK(p) = X(kp) za kp \in K, dok za k \in / K ima vrijednost 0, XK0(k) = 0; • AK – matrica dobijena iz matrice A zadržavanjem kolona k ∈ K, a koje odgovaraju estimiranim pozicijama koeficijenata • XR – vektor od K rekonstruisanih koeficijenata, XR(k), za k ∈ K. Teorema: Energija srednje kvadratne greške u rekonstruisanim koeficijentima, u odnosu na K odgovarajućih koeficijenata u originalnom signalu je IIXK – XRII22 = NA IIX – XK0II22 + K NA σε2. K N 2 (1.32) Dokaz: 1. Krenimo od relacije y = AX, gdje su elementi matrice A dimenzija NA × N definisani sa (1.31). Početna estimacija koeficijenata X (k) se može izračunati na osnovu dostupnih odbiraka signala kao X^ N AH y. = Koristeći (1.33) i (1.29) imamo: X^(k) = Σ x(tn)e-j2πktTn = Σ X(i)µik, NA N -1 n=1 i=0 αdje je µik = Σ ej2π(i-k)tTn = N Σ ania∗nk. 1 N A N A N n=1 n=1 (1.33) (1.34) Za i = k imamo µkk = NA/N, dok se za i ≠ k koeficijenti µik ponašaju kao slučajne varijable nulte srednje vrijednosti i varijanse var{uik} = NA/N2. Za slučaj odabiranja u slučajnim trenucima srednja vrijednost i varijansa signala X^(k) su dakle: E{X^ (k)} = NA X (k), N var{X^ (k)} = NA NΣ-1 |X (i)|2 (1 - δ (k - i)). N2 i=0 (1.35) (1.36) Pretpostavićemo da su pozicije k1,k2,...,kK nenultih koeficijenata u K-rijetkom signalu X estimirane na osnovu X[^]. Estimacija pozicija može biti urad⁻ena na različite načine, u zavisnosti od algoritma koji se koristi. U primjeru na kraju ove sekcije je korišćena iterativna procedura iz MP (matching pursuit) algoritma, a može se koristiti i neka od metoda sa pragom u jednom koraku [44–46]. Pod pretpostavkom da mjerna matrica zadovoljava uslove za rekonstrukciju (RIP ili indeks koherencije) inicijalna estimacija na estimiranim pozicijama nenultih koeficijenata je X^(kp) = ∑ X(i)µikp za p = 1,2,...,K. (1.37) i∈K Ovaj sistem linearnih jednačina se može zapisati i u matričnoj formi kao X^K = BXK = NA XK + CK , N gdje je B matrica dimenzija

1

K ×K sa elementima bij = µkiki, X^K je vektor sa K elemenata dobijen iz početne estimacije kao X^K(i) = X^(ki), a XK je vektor sa K odgovarajućih koeficijenata iz originalnog signala. Uticaj ostalih K – 1 komponenti na rekonstruisani signal je označena sa CK. Rekonstruisani DFT koeficijenti XR, na pozicijama nenultih koeficijenata se dobijaju minimizacijomly-AKXRl22.Njihovevrijednostiseračunajukao XR = (AHKAK)-1AHKy. (1.38) Kako je AHK y = N1 X^K, a imajući u vidu (1.33), prethodnu relaciju možemo zapisati kao XR = (AHKAK)-1X^K. 1 N (1.39) Kako je X^K = BXK , rekonstrukciju možemo smatrati tačnom ako je 1 N (AHKAK)-1 = B-1. Znajući da su elementi matrice AHKAK jednaki βkikj = ΣNn=A1a*kinanki = µkiki/N, možemo zaključiti da je AHKAK = B/N. Iz svega navedenog slijedi da XR = XK zaista važi. Znajući da će rekonstrukcioni algoritam proizvesti tačne vrijednosti X (k) na pozicijama k ∈ K, možemo zaključiti da će uticaj ostalih ostalih K – 1 komponenti označen sa C(k) biti poništen tokom rekonstrukcije XR(k) = NNA (X^ (k) – C(k)) = NNA (NNA X (k)). Rekonstrukcioni algoritam se, dakle, na pozicijama k ∈ K za originalne vrijednosti signala X^ (k) ponaša kao pojačavač za N/NA, usput eliminišući uticaj ostalih komponenti. 2. Pretpostavimo sada da su mjerenja zahvaćena šumom v + ε = AX, pri čemu je varijansa šuma ε ima vrijednost σε2. Šum u mjerenjima će dovesti do greška u estimaciji X^(k). Varijansa u X^(k), prouzrokovana šumom u mjerenjima će biti σX2^(k) = NAσε2. Kako je početna estimacija pomnožena sa N/NA tokom rekonstrukcije (pokazano u stavci 1), to će varijansa šuma u rekonstruisanim komponentama biti var{XR(k)} = NAσε2 NNA 2 NNA2 σε2. = () Ovaj jednostavni rezultat može se provjeriti statistički [44] ili koristeći Bayesian metode [47]. Kako je šum isti u svakoj komponenti rekonstruisanog signala, ukupna srednja kvadratna greška (MSE) u K rekonstruisanih komponenti je IIXR – XK II22 = K NA σε 2. N 2 (1.40) 3. Sada ćemo pretpostaviti da je signal približno rijedak (nerijedak), a da je rekonstruisan pod pretpostavkom da je K-rijedak. Ovo znači da N – K komponenti neće biti rekonstruisano. Ove komponente će se ponašati kao dodatni šum u početnoj estimaciji, odnosno kasnije u rekonstruisanom signalu. Karakteristike ovog šuma su opisane sa (1.35) and (1.36). Svaka nerekonstruisana komponenta X (ki), ki ∈/ K doprinosi šumu u početnoj estimaciji sa varijansom NNA2 |X (ki)|2. U procesu rekonstrukcije ova varijansa je skalirana (N/NA)2 (kao što je pokazano u stavci 1 ovog dokaza). Ukupna varijansa je dakle N1A |X (ki)|2. Ukupna energija šuma u svim rekonstruisanim komponentama signala XR je K puta veća od varijanse u jednog rekonstruisanoj komponenti. Kako je ukupno N − K komponenti, to je ukupna energija šuma IIXK − XRII22 = K NA i=5K+1 |X (ki)|2. 1 N Energija nerekonstruisanih koeficijenata je ∥X-XK0∥22 = ∑ |X(ki)|2. N i=K +1 lz (1.41) i (1.42) slijedi izraz za ukupnu energiju ovog šuma: ∥XK - XR∥22 = NA IIX – XK0II22. K (1.41) (1.42) (1.43) Greške prouzrokovane pretpostavkom rijetkosti nerijetkog signala (stavka 3) i šumom u mjerenjima (stavka 2) su nezavisne. To znači da je totalna očekivana energija greške u -5 greška rekonstruisanih koeficijenata [dB] -10 -15 -20 -25 -30 NA = 5N/8 -15 1 2 3 4 5 greška rekonstruisanih koeficijenata [dB] 6 7 pretpostavljena rijetkost K 8 9 10 11 12 13 14 15 16 17 18 19 20 -20 -25 -30 pretpostavljena rijetkost K = 8 -35 64 96 128 160 192 224 256 broj dostupnih odbiraka NA Slika 1.7: Ukupna energija greške u rekonstruisanim koeficijentima za signal dužine N = 256, za različite vrijednosti rijetkosti (gornji grafik) i različit broj dostupnih odbiraka (dolje). Statistički rezultati su usrednjeni za 100 nezavisnih realizacija u prikazani plavom linijom, dok su teorijske vrijednosti označene crnim zvjezdicama. rekonstruisanim komponentama signala jednaka sumi ove dvije energije: IIXK – XRII22 = NA IIX – XK0II22 + K NA σε2. K N 2 (1.44) Ovime je dokaz završen. Za specijalni slučaj ravnomjerno odabranih signala, formula greške se može lako izvesti iz dvodimenzionog slučaja predstavljenog u [48]: IIXK – XRII22 = K NN–NNAA IIX – XK0II22 + K NA σε2. N 2 (1.45) Ovaj rezultat je moguće izvesti na osnovu prethodnog dokaza koristeći činjenicu da je izraz za varijansu (1.36) u tom slučaju (ravnomjerno odabiranje) |X (i)|2NA(N − NA)/N. Primjer 1.1. Posmatrajmo nerijetki signal x(tn) = N 1 ΣNX(ki)ej2πkitn/T +ε(tn), i=1 gdje je N = 256 i NA =

160 slučajno pozicioniranih odbiraka. Frekvencije ki su slučajno odabrane iz opsega $0 \le ki < N$. Šum ε (tn) je Gausov, sa nultom srednjom vrijednošću, standardne devijacije $\sigma \varepsilon = 0.15/N$. Amplitude signala su definisane u DFT domenu kao X (ki) = 1 + v (i), za i = 1, 2, ..., S (gdje je v (i) slučajna varijabla od 0 do 0.2) i X (ki) =

exp(-3i/(2S)) za i = S + 1, S + 2, ..., N. Signal

29	

je rekonstruisan sa MP algoritmom, za različite pretpostavljene rijetkosti K. Podrazumijevane vrijednosti parametra K su varirane od 1 do 20. Srednja vrijednost energije greške u rekonstruisanim koeficijentima je usrednjena za 100 realizacija (sa slučajnim parametrima signala) i izračunata kao Estatistics = 10log IIXK-XRI22 . () Vrijednost greške je izračunata i teorijski koristeći (1.32). Etheory = 10log K (NA IIX - XK0II22 + K N2 σε2 N . A) Rezultati su prikazani na slici 1.7. Vidimo da se dobijene statističke vrijednosti poklapaju sa izvedenim teorijskim očekivanjima. Glava 2 Analiza gradijentnih algoritama Centralno mjesto ove disertacije predstavljaju gradijentni algoritmi GA za rekonstrukciju signala koji su rijetki u transformacionom domenu. Jedna od osobina koja ovu klasu algoritama razlikuje od većine ostalih algoritama za rekonstrukciju je ta da se signal rekonstruiše u izvornom (vremenskom) domenu, a koristeći znanje o rijetkosti samog signala u transformacionom domenu [49]. Sami algoritam je publikovan u renomiranom časopisu a kasnije je poslužio kao polazna osnova za mnogo druga istraživanja u oblasti CS, a sami algoritam je našao primjenu u mnogim od njih i poslužio kao referentni metod za druga istraživanja [50–57]. U ovoj glavi će, ne gubeći opštost, biti predstavljena verzija ovog algoritma za jednodimenzione signale rijetke u DFT domenu, a sami algoritam je, kao što će se i vidjeti, vrlo jednostavno prilagoditi za druge transformacione domene ili mjere koncentracije. Nakon toga će biti analiziran parametar ∆ ovo algoritma, čiji odabir je od velike važnosti za samu rekonstrukciju. U cilju demonstracije uspješnosti ovog algoritma, biće predstavljeno detaljno pored-enje sa druga dva algoritma koji se koriste u CS. Prilikom pored-enja u obzir će se uzeti brzina i greška rekonstrukcije. Takod⁻e, biće predstavljene mogućnosti kombinovanja izvornog GA sa drugim algoritmima koji se koriste u CS a sa ciljem dobijanja još boljih performansi za odred⁻ene slučajeve od interesa. 2.1 Motiv Posmatrajmo N = 64 odbiraka signala x(n) = sin(8πn/N), (2.1) gdje je n = 0, 1, ..., N – 1. Sa X (k) je označena DFT ovog signala. Na slici 2.1 je prikazan uticaj broja nedostajućih odbiraka na transformacioni domen. Na grafiku pod a) je prikazan DFT originalnog signala. Vidimo da je ovaj signal dobro koncentrisan, odnosno da ima samo dva nenulta koeficijenta. Riječ je, dakle, o izuzetno rijetkom signalu. Na graficima pod b), c) i d) |X (k)| 0.5 |X(k)| 0.5 0 a) 0 -20 0 k 20 -20 0 k 20 b) 0.6 |X(k)| 0.4 0.2 0 0.6 |X(k)| 0.4 0.2 c) 0 d) -20 0 20 -20 0 20 k k Slika 2.1: Uticaj broja nedostajućih odbiraka na transformacioni domen: a) Svi odbirci signala dostupni; b) nedostaju 4 odbirka signala u vremenskom domenu (imaju vrijednost 0); b) nedostaje 10 odbirka signala u vremenskom domenu; b) nedostaje 20 odbirka signala u vremenskom domenu je prikazan DFT signala za slučaj da mu nedostaju 4, 10 i 20 odbiraka, respektivno. Nedostajući odbirak u konkretnom slučaju je zamijenjen vrijednošću 0, jer se radi o signalu čije su amplitude u opsegu [-1, 1], dok su pozicije nedostajućih odbiraka slučajno odabrane. Vidimo da se sa porastom broja nedostajućih odbiraka uvećava vrijednost koeficijenata koji su imali vrijednost 0 (za slučaj signala bez nedostajućih odbiraka). Upravo ova činjenica da sa porastom broja nedostajućih koeficijenata opada koncentrisanost signala će kasnije biti iskorišćena u algoritmu rekonstrukcije. U prethodnom primjeru smo nedostajuće odbirke postavili na vrijednost 0. Kako je stvarna vrijednost tih nedostajućih odbiraka za signal definisan sa (2.1) u opsegu [-1, 1] jasno je da nije

svaki odbirak pomjeren za istu vrijednost u odnosu na svoju stvarnu vrijednost. Sada ćemo vidjeti kako intenzitet oštećenja utiče na transformacioni (rijetki) domen. Kao mjeru koncentrisanosti/rijetkosti signala ćemo koristiti normalizovanu (dijeljenje sa N) ℓ1 normu DFT koeficijenata definisanu sa 1 N-1 M[DFT[x(n)]]= N (2.2) k=0 ∑ |X(k)|, gdje veće vrijednost mjere odgovaraju manjoj koncentrisanosti i obrnuto. Posmatraćemo slučaj 4, 7, 10 i 20 oštećenih odbiraka. Za svaki od ovih slučajeva, smo intenzitet svih odbiraka koji su oštećeni pomjerili za 0.2, 0.4, 1 i 3. Podsjetimo da je razlika izmed⁻u maksimalne i minimalne vrijednosti signala max [x(n)] - min [x(n)] = 2. Vrijednosti mjere koncentracije signala za prehodno navedeni scenario su prikazani u tabeli 2.1. Vidimo da se sa povećanjem intenziteta oštećenja povećava i vrijednost mjere koncentracije (2.2), odnosno signal biva sve slabije koncentrisan. Mjera koncentracije originalnog signala, kome ni jedan odbirak nije oštećen je 1. Tabela 2.1: Vrijednost ℓ1 norme za razne kombinacije broja nedostajućih odbiraka i inteziteta oštećenja. Vrijednost mjere originalnog signala je 1. Broj nedostajućih Intezitet oštećenja odbiraka 0.2 0.4 1 3 4 1.35 1.70 2.76 6.32 7 1.45 1.90 3.25 7.76 10 1.94 2.88 5.72 15.17 20 2.04 3.09 6.23 16.69 Prethodna dva primjera i analize možemo svesti na dva zaključka: • Povećanje broja nedostajućih odbiraka dovodi do slabije koncentracije signala u domenu rijestkosti • Povećanje intenziteta oštećenja dovodi po slabije koncentracije signala u domenu rijetkosti Imajući ovo u vidu, možemo intuitivno doći do zaključka da bi algoritam koji bi varirao vrijednosti odbiraka u vremenskom domenu, vodeći računa da signal bude što je moguće više koncentrisan u domenu rijetkosti, dovodio do konvergencije vrijednosti odbiraka signala stvarnim vrijednostima. Ova činjenica predstavlja jednu od osnovnih ideja nastanka gradijentnih algoritama koji su tema ove disertacije. U prethodnim primjerima smo govorili o rekonstrukciji nedostajućih odbiraka signala. Na prvi pogled, može se izvesti pogrešan zaključak da opisani scenario nema veze sa CS postavkom definisanom sa 1.10. Med⁻utim, kao što je već ranije i pomenuto, dostupni odbirci signala (oni kojima znamo pozicije i vrijednosti) u prethodna dva primjera odgovaraju mjerenjima signala v u klasičnom CS scenariju za slučaj parcijalne DFT matrice pomenute u odjeljku 1.3.2. 2.1.1 Direktna pretraga Prije nego što definišemo gradijentni algoritam, pokazaćemo kako se prethodni zaključci mogu iskoristiti za rekonstrukciju originalnog signala ne vodeći računa o optimizaciji i mogućnosti eventualne praktične primjene. Posmatrajmo N = 128 odbiraka signala x(n) = $2\sin(6\pi n/N)+3\cos(24\pi n/N)$, (2.3) gdje je n = 0, 1, . . . , N – 1. Pretpostavimo da su dva odbirka tog signala na pozicijama m1 i m2 nedostupna (0 ≤ m1, m2 ≤ N − 1). Njihove vrijednosti su postavljene na 0. Imajući u vidu da će mjera koncentracije (2.2) biti minimalna za slučaj da nedostajući odbirci imaju stvarne vrijednosti, to ćemo direktnom pretragom pokušati da pronad⁻emo koje su to vrijednosti. Kako se amplituda signala (2.3) može kretati u opsegu [-5, 5], to ćemo ovaj interval podijelili na 101 vrijednost (korak 0.1), pri čemu svaki od nedostajućih odbiraka signala može uzeti bilo koju od 101 vrijednosti iz posmatranog intervala. Zatim ćemo sračunati mjeru koncentracije za svaku od 5 x(n) 0 -5 a) 0 50 n 100 5 x(n) 0 -5 c) 0 50 n 100 5 M x(m1) 0 -5 e) -5 x(m2) 0 5 1.5

|X (k)| 1 0.5 0 b) -50 k 0 50 1.5 |X (k)| 1

88

0.5 0 d) -50 k 0 50 M 1 0.5 0 5 x(m0) -5 0 2 -5 5 x(m1) f) Slika 2.2: Rekonstrukcija dva odbirka signala direktnom pretragom u vremenskom domenu. a) Originalni signal kome su dva odbirka, označena crvenim krstićima oštećena; b) DFT domen tog signala; c) rekonstruisani signal, gdje su za vrijednosti dva nedostajuća odbirka uzete one vrijednost koje proizvode najmanju vrijednost mjere koncentracije; d) DFT rekonstruisanog signala; e) mjera kao funkcija vrijednosti nedostajućih

odbiraka; f) normalizovana mjera kao funkcija vrijednosti nedostajućih odbiraka prikazana u tri dimenzije. 10201 = 1012 kombinacija vrijednosti nedostajućih odbiraka. Za rekonstrujsane vrijednosti su izabrane one koje su proizvele najmanju mjeru koncentracije. Na slici 2.2 je prikazan prethodno opisani eksperiment. Vremenski diskretni domen posmatranog signala je prikazan pod a), pri čemu su crvenim kružićima označeni odbirci na nedostajućim pozicijama m1 i m2. DFT domen ovog signala prikazan je pod b). Obratimo pažnju da ovaj signal u transformacionom domenu nema nultih koeficijenata, što je posljedica netačnih vrijednosti odbiraka na pozicijama m1 i m2. Nakon sprovedene pretrage vrijednosti odbiraka x(m1) i x(m2) koje proizvode najmanju vrijednost mjere koncentracije (2.2) dobijene vrijednosti su proglašene za tačne i tako je dobijen rekonstruisani signal predstavljen pod c). Njegov DFT domen je prikazan pod d) i kao što vidimo, svega 4 koeficijenta imaju nenultu vrijednost, dok ostali imaju vrijednost jako bliske 0, koje možemo zanemariti. Vrijednosti mjere za razne kombinacije vrijednosti odbiraka x(m1) i x(m2) je prikazan pod d). Crnim linijama su označene tačne vrijednost nedostajućih odbiraka. Možemo primijetiti da se minimum mjere koncentracije poklapa sa stvarnim vrijednostima odbiraka. Normalizovana mjera u tri dimenzije je prikazana pod f). Jasno je da smo sprovedenim postupkom uspješno rekonstruisali nedostajuće odbirke. Iako, teorijski posmatrano, prethodni postupak možemo koristiti za rekonstrukciju, do problema dolazi kada se susretnemo sa realnim dimenzijama signala i brojem nedostajućih odbiraka. Za slučaj signala kome nedostaje 10 odbiraka čija vrijednost je u intervalu [-5, 5] i ukoliko je željena tačnost vrijednosti rekonstruisanih odbiraka 0.001 potrebno je izvršiti 1000110 ≈ 1040 računanja mjera koncentracije. Očigledno je da ovaj postupak nije moguće izvršiti na standardnim računarima. Formula kojom se može u opštem slučaju izračunati broj potrebnih operacija O bi bila O = LM , gdie je L broj mogućih vrijednosti koje može imati svaki od nedostajućih odbiraka, a M je broj odbiraka signala koji nedostaju. Jedan mogući način za smanjenje broja potrebnih operacija bi mogla biti upotreba promjenjivog koraka, gdje bi se u početnim iteracijama koristio veći korak za grublju aproksimaciju vrijednosti, a nakon toga bi se posmatrani opseg mogućih vrijednosti i korak smanjivali za tačniju aproksimaciju. Ipak, i na ovaj način bismo ostali ograničeni na rekonstrukciju malog broja nedostajućih odbiraka. 2.2 Algoritam Prethodno opisani postupak pretrage svih mogućih vrijednost nedostajućih odbiraka signala nije moguć u realnim aplikacijama. Jedno od mogućih rješenja problema bi bilo mijenjanje vrijednosti svakog od odbiraka u smjeru tačne vrijednosti tog odbirka u originalnom signalu. Prilikom odred⁻ivanja smjera u kom treba pomjerati vrijednosti svakog od nedostajućih odbiraka u obzir je uzeta mjera koncentracije, odnosno, u sekciji 2.1 prezentovani zaključak da intenzitet oštećenja direktno utiče na vrijednost mjere koncentracije. Odabirom pravog smjera za pomjeranje, dolazi do smanjivanja inteziteta oštećenja, a samim tim i mjere koncentracije. Ove ideje su iskorišćene za realizaciju gradijentnog algoritma rekonstrukcije [49] koji je centralna tema ove disertacije. Posmatrajmo N odbiraka diskretnog signala x(n), gdje je n = 0, 1, ... N - 1. Pretpostavimo da nam je dostupno NA odbiraka signala na pozicijama NA = {n1 , n2 , . . . , nNA } ⊂ N = {1, 2, . . . , N }, gdje je sa NA označen skup pozicija ovih (dostupnih) odbiraka. Preostalih NM = N - NA odbiraka ovog signala nedostaje NM = {g1, g2, ..., gM }, gdje je NM = N \ NA. Sa T [·] ćemo označiti operator transformacije koji signal iz vremenskom domena prevodi u transformacioni domen, dok će sa xr (n) biti označen rekonstruisani signal u vremenskom domenu. Za mjeru koncentracije M p ćemo koristiti relaciju M p $[f(x)] = \sum [$ f (x)|1/ p , 1 (2.4) Nx x gdje je Nx dužina vektora f (x). Obratimo pažnju da za p = 1 ova mjera predstavlja ℓ1 normu , dok za p = 1/2 govorimo o ℓ2 normi. Zbog lakšeg razumijevanja i preglednosti, nabrojmo taksativno važne oznake: • x(n) - originalni signal • N i N - dužina originalnog signala i skup pozicija svih odbiraka, respektivno • NA i NA - broj dostupnih odbiraka i skup pozicija dostupnih odbiraka, respektivno • NM i NM - broj nedostajućih odbiraka i skup pozicija nedostajućih odbiraka,

respektivno • T [·] - operator transformacije signala iz vremenskog u domen rijetkosti • Mp[·] - mjera koncentracije • xr(n) - rekonstruisani signal u vremenskom domenu Algoritam se može opisati sljedećim koracima: Formirajmo početnu iteraciju m = 0 rekonstruisanog signala kao xr(0)(n), gdje indeks (0) govori da se radi o početnoj iteraciji algoritma m = 0. Na pozicijama dostupnih odbiraka NA ovaj signal ima vrijednosti originalnog signala, dok na pozicijama nedostupnih odbiraka ovaj signal ima vrijednosti originalnog signala, dok na pozicijama nedostupnih odbiraka ovaj signal ima vrijednosti originalnog signala, dok na pozicijama nedostupnih odbiraka ovaj signal koristićemo u koraku 5 za ispitivanje postignute preciznosti, kao uslov za obustavu algoritma. Pomenimo da dostupni odbirci signala predstavljaju mjerenja signala y(n), gdje je za dobijanje mjerenja korišćena parcijalna DFT matrica. Odredimo parametar Δ kao magnitudu signala xr(0)(n), tj. Δ = max xr(0)(n) . Korak 1:| U svak|oj iteraciji algoritma m, za svaki nedostajući odbirak signala na pozicijama qi iz skupa NIM formlirajmo dva signala xr+(n) i xr-(n) xr+(m)(n) = { xx(rr(mm)) ((nn)) + Δ xr-(m)(n) = { xx(rr(mm))((nn)) - Δ for n = qi for n ≠ qi for n = ni for n ≠ ni Korak 2: Odredimo gradijent mjere za svaki par signala formiranih u koraku 1 g(qi) = Mp T[x+r(m)(n)] - Mp T[x-r(m)(n)] []2 Δ [] . (2.5) Mjera Mp je definisana sa (2.4). Korak 3:

Formiramo vektor gradijenata G dužine N. Na pozicijama dostupnih odbiraka ovaj vektor ima 69 vrijednost

0, dok na pozicijama qi iz skupa NM ima vrijednost g(qi) sračunatu u koraku 2. G(m)(n) = g(qi) za n ∈ NM, gdje je qi = n { 0 za n ∈ NA Korak 4: Izračunamo ažuriranu vrijednosti rekonstruisanog signala xr

(m+1)(n) kao xr $(m+1)(n) = xr (m)(n) - \mu G (m)(n)$.

Konstanta µ utiče na performanse algoritma i obično se uzima µ = 2 Δ . Korak 5: Provjerimo da li je zadovoljen neki od kriterijuma za zaustavljanje algoritma. Ukoliko jeste, rekonstruisani signal je xr(n) = xr(m+1)(n), a ukoliko nije, proglasimo trenutnu vrijednost rekonstruisanog signala xr(m+1)(n) za aktivnu xr(m)(n), tj. uvedimo m \leftarrow m + 1. Nakon ovoga potrebno je provjeriti da li je algoritam ušao u oscilatorno stanje za posmatrano Δ . Ukoliko jeste potrebno je smanjiti Δ i vratiti se na korak 1. Eksperimentalnim putem je utvrd⁻eno da je Δ poželjno smanjiti kao $\Delta/3$, a više o samom parametru delta će biti riječi kasnije. Ukoliko je parametar Δ ažuriran, potrebno je promijeniti i signal xt(n) koji se koristi u kriterijumu za zaustavljanje algoritma xt(n) = xr(m)(n). Ponavljajući korake 1-5 u iterativnoj proceduri, vrijednosti nedostajućih odbiraka će voditi ka minimalnoj mjeri koncentracije, a samim tim i ka stvarnim vrijednostima ovih odbiraka. Komentari: • Vrijednost 0 za nedostajuće odbirke u početnoj iteraciji (0) je uzeta pod pretpostavkom da je srednja vrijednost odbiraka 0. Za odred⁻ene klase signala kod kojih srednja vrijednost ima neku drugu vrijednost, nedostajuće odbirke treba postaviti na tu vrijednost. Kod slike, gdje je vrijednost piskela u intervalu [0, 255], smislena je izabrati vrijednost 127 ili 128. • Konstanta Δ se koristi da bi se odredilo da li je posmatrani odbirak treba uvećati ili umanjiti za odred⁻enu vrijednost, p = 1, pa otuda i ovaj algoritam u toj formi smatramo algoritmom zasnovanim na ℓ 1 normi. Prezentovani algoritam svakako može koristiti i druge konveksne

16/02/2021

Similarity Report

norme. Primjer upotrebe drugih normi biće prikazan kasnije. • U mnogim realizacijama i primjerima u ovoj tezi, za domen rijetkosti je korišćen DFT domen, sa izuzetkom rekonstrukcije slike, gdje je korišćen DCT domen. Algoritam, možemo koristiti i sa drugim transformacionim domenima, što je za primjer Hermitskog domena pokazano u [57]. Algoritam 1 Gradijentni algoritam Require: • Skup pozicija nedostajućih odbiraka NM • Mjerenja, odnosno dostupni odbirci signala y(n) 1: $xr(0)(n) \leftarrow y(n) 2: xr(0)(n) \leftarrow 0$

3: $m \leftarrow 0$ 4: $\Delta \leftarrow max$ |xr (0)(n)| 5: repeat 6: repeat 7: xr (m+1)(n) \leftarrow xr (m)(n) 8: for

qi ∈ NM do 9: Xr+(k) ← T x(rm)(n) + $\Delta\delta$ (n − qi) 10: Xr−(k) ← T x(rm)(n) − $\Delta\delta$ (n − qi) [] 1 N∑−[1 |Xr+(k)| − |Xr−(k)|] 11: g(i) ← N k=0 12: x(rm+1)(qi) ← x(m)(qi) − g(i) 13:

end for 14: $\mathbf{m} \leftarrow \mathbf{m} + \mathbf{1}$ 15: until nije zadovoljen kriterijum za smanjenje Δ 16: $\Delta \leftarrow \Delta/\mathbf{3}$ 17: until nije postignuta

željena preciznost 18: xr(n) ← xr(m)(n) Output: • Rekonstruisani signal xr(n) ⊲ za n ∈/ NM ⊲ za n ∈ NM ⊲ za svako n ⊲ za i = 1, 2, . . . , M • Gradijent mjere računat u koraku 2 je proporcionalan grešci xr(m)(n) − x(n). • Prilikom ažuriranja signala u koraku 4, odbirci signala koji su poznati (pozicije iz skupa NA) će ostati nepromijenjeni, jer gradijentni vektor G na tim pozicijama ima vrijednost 0. • Uvedimo oznaku xs(n) = xr(0)(n). Oznaka xs(n) je uvedena zbog ljepšeg zapisa na graficima i uvijek će se odnositi na signal kome su vrijednost nedostajućih odbiraka postavljene na 0. Prezentovana procedura rekonstrukcije je u formi algoritma/pseudokoda prikazana u algoritmu 1. Zbog kompaktnosti zapisa neki od koraka su prikazani drugačije u odnosu na gore predstavljene korake. Komentari: • Prilikom formiranja inicijalne vrijednosti rekonstruisanog signala xr(0)(n), korišćen je vektor mjerenja y(n), a sama procedura formiranja je obavljena u linijama 1 i 2. • Pri računanju gradijenta mjere korišćena je suma apsolutnih vrijednosti, koja odgovara ℓ1 normi. Ova norma je izabrana jer je ona korišćena u skoro svim primjerima u ovoj tezi, ali je u ovom koraku moguće koristiti i neku drugu mjeru. Ove operacije opisane su u linijama 9-11. • Kod ažuriranja rekonstruisanog signala, ažurirane su samo vrijednosti na nedostajućim pozicijama, imajući u vidu da se poznate pozicije ne mijenjaju (linija 12). • U algoritmu je korišćeno μ = 2Δ, te je stoga došlo do izostavljanja vrijednosti 2∆ u liniji 11, kao i parametra µ u liniji 12. 2.2.1 Ilustracija rekonstrukcije u vremenskom domenu Primjer rada algoritma biće ilustrovan na jednostavnom primjeru. Posmatramo signal dužine N = 32 definisan kao x(n) = sin(4πt), na intervalu [0,1−Δt] sa korakom Δt = 1/Ν. Pretpostavimo da ovom signalu nedostaju 4 odbirka čija je vrijednost postavljena na 0. Primijenjeno je 8 iteracija gradijentnog algoritma. Korišćena je fiksna vrijednost ∆ = max xr(0)(n) /5. Ova vrijednost parametra ∆ uzeta je iz praktičnih razloga sa ciljem da se jasnije uoči ponašanje algoritma. Sa većim vrijednostima bi algoritam mnogo brže doveo odbirkle do želljenih vrijednosti i ušao u fazu oscilacija. | | Detaljna analiza parametra 🛆 data je u nastavku teze. Rezultati i tok rekonstrukcije prikazani su na slici 2.3. Plavom bojom prikazane su vrijednost signala xr(n) tokom iteracija. Crvenom bojom prikazana je razlika izmed⁻u trenutke vrijednosti odbiraka koje rekonstruišemo i stvarne vrijednost odbiraka na tim pozicijama. Vidimo da se tokom iteracija dužina crvenih linija smanjuje,

2

što znači da odbirci na tim pozicijama tokom iteracija bivaju sve bliži tačnim vrijednostima. 2.2.2 Kriterijum za zaustavljanje algoritma Kako je riječ o iterativnom algoritmu, jasno je da odred⁻eni kriterijum za obustavu algoritma mora biti usvojen. Jedno moguće rješenje jeste da se koristi neki unaprijed zadati broj iteracija. Ova ideja bi za neki dovoljno veliki broj iteracija dala zadovoljavajuće rješenje u pogledu tačnosti rekonstrukcije, med⁻utim ta procedura ne bi bila vremenski optimalna. Nakon odred⁻enog broja iteracija i nakon smanjenja parametra ∆ do vrijednosti koja proizvodi kompjuterski ograničenu preciznost (~ 10-14 za MATLAB), algoritam bi počeo da oscilira oko stacionarne tačke ne doprinoseći daljem smanjenju greške. Takod⁻e u situaciji gdje nam ne treba toliko velika preciznost, ne bi bili u mogućnosti da detektujemo da li je algoritam dostigao željenu preciznost ili je greška još uvijek isuviše velika. Kao rješenje ovim problemima nameće se korišćenje procjene greške rekonstrukcije. Za računanje tačne greške rekonstrukcije, bilo bi potrebno koristiti kompletan skup odbiraka i rekonstruisanog i originalnog signala. Kako je u xr (n) 1 0.5 0 m=1 -0.5 -1 10 n 20 30 xr (n) 1 0.5 0 m=3 -0.5 -1 10 n 20 30 xr (n) 1 0.5 0 m=5 -0.5 -1 10 20 30 n 1 0.5 m=7 xr (n) 0 -0.5 -1 10 n 20 30 xr (n) 1 0.5 0 m=2 -0.5 -1 10 n 20 30 xr (n) 1 0.5 0 m=4 -0.5 -1 10 n 20 30 xr (n) 1 0.5 0 m=6 -0.5 -1 10 20 30 n 1 0.5 m=8 xr (n) 0 -0.5 -1 10 n 20 30 Slika 2.3: Rekonstrukcija signala gradijentnim algoritmom u 8 iteracija. Plavom bojom prikazan je signal xr(n), dok je crvenom bojom prikazana razlika izmed⁻u trenutne vrijednosti odbiraka koje rekonstruišemo i stvarne vrijednost odbiraka. trenutku rekonstrukcije originalni signal nepoznat (njega pokušavamo rekonstruisati), moramo pokušati da procijenimo tu grešku. Jedan od načina da to izvedemo, a koji je korišćen u implementaciji algoritama i u ovoj tezi, jeste da izračunamo odnos rekonstrukcione greške i signala [3] za set dostupnih odbiraka kao (n) 2 Tr = 10 log10 ∑n∈NM xr(m) xt (n|) - x(rm)(n) 2 (2.6) ∑n∈NM | Predloženi kriterijum nam omogućava da procijlenimo grešku rejkonstrukcije. U slučaju da je | vrijednost praga Tr ispod neke unaprijed zadate vrijednosti (npr. 100dB) to znači da treba nastaviti sa iteracijama algoritma, dok ukoliko dobijemo vrijednost veću od nekog unaprijed zadatog praga, znači da smo postigli željenu preciznost i da možemo prestati sa iteracijama algoritma. Napomenimo da je ovo samo procjena, a ne egzaktna greška rekonstrukcije, koju nije ni moguće tačno izračunati. Primjer 2.1. Posmatrajmo N = 256 odbiraka signala x(n) = 3sin(2 π f1t)+3cos(2 π f2t)+0.4sin(2 π f3t), na intervalu [0,1– Δ t] sa korakom Δ t = 1/N, gdje su f1 = 10, f2 = 15 i f3 = 30. Pretpostavimo da NA = 100 odbiraka ovog signala na slučajnim pozicijama nedostaje i da ih je potrebno rekonstruisati. Rekonstrukcija je izvršena gradijentnim algoritmom, a rezultati rekonstrukcije su prikazani na slici 2.4. Na grafiku a) je prikazan početni signal kome 100 od 256 odbiraka nedostaje. Na grafiku pod b) je prikazan DFT domen ovog signala. Iako se pomenuti signal sastoji od 3 sinusoidalne komponente od kojih svaka proizvodi po 2 koeficijenta u DFT domenu, vidimo da usljed velikog broja nedostajućih odbiraka nemamo očekivanih 6 nenultih komponentni. Naime, šum koji su ovi nedostajući odbirci proizveli je zahvatio sve komponente u DFT domenu, pa tako svih 256 koeficijenata DFT domena imaju nenultu vrijednost. Nakon 50 iteracija algoritma, rekonstruisani signal je prikazan pod c) gdje su crvenom bojom prikazani rekonstruisani odbirci. DFT domen ovog signala prikazan je pod d). Vidimo da nakon procesa rekonstrukcije samo 6 koeficijenata ima nenultu vrijednost, što je i očekivano za signal x(n) iz ovog primjera. Na grafiku pod e) je prikazan parametar ∆ tokom svih 50 iteracija algoritma. Konačno, na grafiku f) je prikazana procijenjena greška rekonstrukcije računata sa (2.6). Vidimo da sa smanjenjem ∆ dolazi do smanjenja i procijenjene greške što se poklapa sa očekivanjima, jer manje vrijednost ∆ dovode do tačnije rekonstrukcije, a samim tim i manje greške. Uvedeni parametar Tr, dakle, ima smisla koristiti za procjenu greške rekonstrukcije, a samim tim i prekid iteracija algoritma. Obratimo pažnju da veće vrijednost Tr odgovaraju manjoj vrijednosti greške. U slučaju zamjene brojioca i imenioca u (2.6), manje vrijednost Tr bi odgovarale manjoj grešci, ali bi u tom slučaju

radili sa negativnim vrijednostima, što je i razlog ovog načina definisanja greške u (2.6). 5 xs (n) 0 -5 5 xr (n) 0 -5 10 1 50 100 n 150 50 100 n 150 200 200 250 250 a) c) 1 |Xs(k)| 0.8 0.6 0.4 0.2 1.5 |Xr (k)| 1 0.5 -100 -100 -50 -50 k 0 k 0 50 50 100 100 b) d) ∆ 10 -1 10 -3 e) 150 5 10 15 20 25 m 30 35 40 45 50 Tr [dB] 100 50 0 f) 5 10 15 20 25 m 30 35 40 45 50 Slika 2.4: Rekonstrukcija signala gradijentnim algoritmom u 50 iteracija, pri čemu je parametar ∆ mijenjan kao ∆ ← ∆/3 na svakih 5 iteracija. a) Početni signal kome nedostaje 100 odbiraka; od ukupno 256; b) DFT početnog signala; c) rekonstruisani signal; d) DFT rekonstruisanog signala; e) parametar Δ ; f) procijenjena greška rekonstrukcije Tr. 2.3 Parametar Δ i njegov uticaj na rekonstrukciju Kao što vidimo, parametar od kojeg najviše zavisi rekonstrukcija je 🛆 [3, 58]. Zbog toga će on detaljno biti analiziran u ovoj sekciji. Kako je prezentovani algoritam u najvećem broju slučajeva u ovoj tezi korišćen sa DFT signalima, to će sljedeća analiza podrazumijevati da je DFT domen rijetkosti signala. Takod⁻e, imajući u vidu da je algoritam dominantno korišćen sa ₹1 normom, ista će se takod⁻e podrazumijevati u daljoj analizi. Posmatrajmo signal u vremenskom domenu x(n) i njegovu K-rijetku prezentaciju u DFT domenu X(k), gdje su dužine signala N. Pretpostavimo da jedan odbirak signala x(n) na poziciji nx nedostaje, a da je signal koji rekonstruišemo xr(n). Odbirak na poziciji nx može uzeti proizvoljnu vrijednost xr(nx) = x(nx)+s(nx) gdje je sa s(nx) označena promjenljiva koja predstavlja pomjeraj na poziciji nx u odnosu na stvarnu vrijednost posmatranog odbirka u originalnom signalu x(n). Dalje, ℓ1 norma DFT prezentacije signala koji želimo rekonstruisati je N−1 IIXrII1 = ∑ IXr(k))I. (2.7) k=0 U skladu sa korakom 1 predstavljenim u sekciji 2.2, a imajući u vidu promjenu posmatrane varijable s(nx) posmatrajmo dva signala

xr+(n) = x (n) +(s (n) $+\Delta)\delta$ (n -nx) xr-(n) = x(n) + (s (n) $-\Delta)\delta$ (n

- nx) (2.8) gdje je δ (n - nx) Dirakova delta funkcija sa vrijednošću 1 u nx. Gradijent mjere za prethodno dva kreirana signala na poziciju nx, a definisan u koraku 2 algoritma u sekciji 2.2 je g(nx) = $\|X+r\|1 - \|X+r\|1 \cdot 2N\Delta$ (2.9) Obratimo pažnju da se konstanta N u imeniocu, za razliku od algoritma u sekciji 2.2, javila zbog izostavljanja iste u (2.7). Izračunajmo sada DFT domen signala definisanih sa (2.8). Počnimo sa signalom x+r(n) Xr+(k) = $\sum x(n) + (s(n) + \Delta)\delta$ (n - nx) e- j 2N π nk

N-1 n=0 = $\sum x$ (n)e-j 2N π nk + $\sum (s (n) + \Delta)\delta(n - nx)e-j$ 2N π nk N-

1 (N-1) n=0 n=0 = X (k) + (s(nx) + Δ)e- j 2Nπ nxk. Na sličan način dobijamo i DFT domen signala x-r(n) Xr-(k) = X(k)+(s(nx) -Δ)e-j2Nπnxk. Uočimo da se impuls δ (n - nx) prostire na svim frekvencijama u DFT domenu. Prije nego što se vratimo na izraz (2.9) izračunajmo mjere koncentracije (l norme) signala Xr+(k) i Xr-(k). Za prvi od ova dva signala važi Xr+ 1 = \sum Xr+ (k)) = \sum X (k) + (s(nx) + Δ)e- j 2Nπ nxk . N-1 N-1 || k=0 || k=0 || || || Ukoliko zanemarimo uticaj desnog sabirka sume (s(nx) + Δ)e- j 2Nπ nxk na K nenultih koeficijenata || | u X (k) prethodnu relaciju možemo aproksimirati sa Xr+ 1 = \sum X(k)+ (s(nx)+Δ)e-j2Nπnxk ≈γ+|s(nx)+Δ|N, N-1 (2.10) k=0 gdje je γ = ||X||1 mjera konce|ntracije (l norma DFT koe|ficijenata) originalnog signala x(n). || || || || Sličnu aproksimaciju možemo uraditi i za drugi signal, pa dobijamo Xr- 1 = \sum X(k)+(s(nx) -Δ)e-j2Nπnxk ≈γ+|s(nx)-Δ|N, N-1 (2.11) k=0 || || || Konačno, možemo dobijene re|lacije uvrstiti u (2.9) i dobit|i gradijent mjere u za poziciji nx g(nx) = ||X+r||1 - ||X+r||1 ≈ |s(nx) + Δ| - |s(nx) - Δ| 2NΔ 2Δ . (2.12) Prethodno dobijeni izraz možemo

72

tumačiti na dva načina: • $|s(nx)| < \Delta$ - Ukoliko je odstupanje s(nx) od stvarne vrijednost signala manje od parametra Δ tada se relacija (2.12) aproksimira sa g(nx) ≈ s(nx) 🛆 ~ s(nx). Obratimo pažnju da je gradijent mjere u ovom slučaju proporcionalan intenzitetu oštećenja odbirka s(nx), kao i da važi |g(nx)| < 1. • |s(nx)| > ∆ - Ukoliko je odstupanje s(nx) od stvarne vrijednost signala veće od parametra ∆ tada se relacija (2.12) aproksimira sa g(nx) ≈ sign(s(nx)). U ovom slučaju gradijent mjere nije proporcionalan intenzitetu oštećenja odbirka s(nx), već se može koristiti isključivo za odred⁻ivanje smjera u kom se nalazi tačna vrijednost signala. Primjer 2.2. Izračunajmo gradijent mjere za (a) s(nx) = 0.6 i Δ = 10 g(nx) = |0.6 + 10| – |0.6 – 10| $10.6 - 9.4 \ 1.2 \ s(nx) \ 2 \times 10 = 20 = 20 = \Delta$ (b) $s(nx) = -0.6 \ i \ \Delta = 10 \ g(nx) = |-0.6 + 10| - |-0.6 - 10| \ 9.4 - 10.6 - 1.2 \ s(nx) \ 2 \times 10$ = 20 = 20 = Δ (c) s(nx) = 3.6 i Δ = 0.1 g(nx) = |3.6 + 0.1| - |3.6 - 0.1| 3.7 - 3.5 2 × 0.1 = = 1 = sign(s(nx)) 0.2 (d) s(nx) = -3.6 i Δ = 0.1 g(nx) = |-3.6 + 0.1| - |-3.6 - 0.1| 3.5 - 3.7 2 × 0.1 = = −1 = sign(s(nx)) 0.2 lako je analiza u ovoj sekciji rad⁻ena za slučaj jednog odbirka koji nedostaje, pokazalo se da izvedene relacije dobro prate teoriju i za slučaj više oštećenih odbiraka [58]. 2.3.1 Parametar ∆ i tačnost rekonstrukcije Vidjeli smo kako ∆ utiče na vrijednost gradijenta mjere. Sada ćemo za slučaj jednog nedostajućeg odbirka, vidjeti kako vrijednost parametra ∆ utiče na preciznost rekonstrukcije [3]. U analizi će se takod⁻e posmatrati slučaj jednog nedostajućeg odbirka, a iskustveno je potvrd⁻eno da izvedeni zaključci u dobroj mjeri prate i slučaj više nedostajućih odbiraka. Pretpostavimo da imamo signal oblika x(n) = Σ Aie j 2Nπ nki K (2.13) i=1 koji ima K nenultih komponenti u DFT domenu. Dalje, smatraćemo da je u procesu rekonstrukcije vrijednost nedostajućeg odbirka izjednačena sa vrijednošću istog u originalnom signalu, odnosno da je intenzitet oštećenja na poziciji posmatranog odbirka s(nx) = 0.. Izračunajmo vrijednost mjera koncentracije (ℓ1 norme DFT koeficijenata) signala x+r(n) i x-r(n) za posmatrani slučaj. Krenimo od vrijednosti ovih signala koje su xr+(n) = x(n) + $\Delta\delta$ (n – nx) xr–(n) = x(n) – $\Delta\delta$ (n – nx). Izračunajmo najprije DFT domen posmatranih signala. Za x+r(n) imamo Xr+(k) = $\sum x+r(n)e-j 2N\pi$

 $nk = \sum (x(n) + \Delta \delta (n - nx)) e - j 2N\pi nk$. N- 1 N- 1 n=0

n=0 Uvrstimo sada (2.13) u prethodnu relaciju i razdvojmo sumu na dva dijela Xr+(k)= $\sum \Delta i = 2N\pi n kie-j2N\pi n kie - j2N\pi n kie - j2N\pi$

$$\begin{split} \mathbf{K} \Delta + (\mathbf{N} - \mathbf{K}) \Delta &= \gamma + \mathbf{N} \Delta \quad \mathbf{K} \quad \mathbf{i=1} \quad \|\mathbf{X}\mathbf{r} - \|\mathbf{1} = \sum |\mathbf{N}\mathbf{A}\mathbf{i}| - \mathbf{K} \Delta \quad + (\mathbf{N} - \mathbf{K}) \Delta \quad = \gamma + \mathbf{(N} - 2\mathbf{K}) \Delta \parallel \quad \mathbf{6} \\ \mathbf{K} \end{split}$$

, (2.15) ∥ ∥ i=1 pri čemu je γ = ∥X∥1. Ukoliko uporedimo prethodne dvije norme jasno je da njihovim ∥ uvrštavanjam u izraz za gradijent mjere (2.9) dobijamo g(nx) ≠ 0. To znači da će algoritam pomjeriti vrijednost odbirka na poziciji nx iz tačne

vrijednosti za vrijednost b, kako bi gradijent mjere bio 0. Za tako pomjerenu vrijednost, mjere (2.15) će biti Xr+ 1 = γ + N(Δ - b) $\|\|X-r\|$ 1 = γ + (N - 2K)(Δ + b) . Izjednačavajući $\|X+r\|$ 1 i $\|X+r\|$ 1 $\|dob\|$ ijamo izraz za bias b minimuma mjere koncentracije $\|N(\Delta - \Delta)\|$

b) = (N - 2K)(△ + b) b= K N-K △≈ K N

 Δ Aproksimacija u prethodnom izrazu je urad $\overline{}$ ena pod pretpostavkom da je dužina signala mnogo veća od broja nenultih koeficijenata u DFT domenu N ≫ K. Vidimo da je bias proporcionalan parametru ∆, što znači da je za veliku preciznost potrebno koristiti malo 🛆. Med⁻utim, mala vrijednost parametra 🛆 povlači za sobom potrebu za velikim brojem iteracija kako bi se došlo do minimuma mjera, odnosno uspješne rekonstrukcije. Kao logično rješenje problema nameće se potreba za uvod⁻enjem varijabilnog ∆. U početku bi se koristile veće vrijednosti, kako bi se brže približili minimumu mjere, a nakon toga bi se∆ smanjivalo kako bi dobili veću tačnost rekonstrukcije. *Dokaz Dokažimo da važi jednakost N−1 n=0 ∑ e− j 2Nπ n(k-ki) = Nδ (k - ki). Posmatrajmo DFT signala x(n) dužine N X(k) = Nδ(k-ki). Izračunajmo inverznu DFT ovog signala x(n) = N 1 N Σ -1N δ (k-ki)ej2N π nk = ej2N π nki. k=0 Furijeov transformacioni par, dakle, čine signali X(k) $\leftrightarrow \rightarrow$ x(n), N δ (k-ki) $\leftrightarrow \rightarrow$ ej2Nπnki. Uvrstimo sada signal x(n) u izraz za DFT X(k)=Nδ(k-ki)= Σ ej2Nπnkie-j2Nπnk. N -1 n=0 Iz prethodnog izraza slijedi N −1 n=0 ∑ e− j 2Nπ n(k−ki) = Nδ (k − ki). 180 170 α ugao u stepenima 150 130 110 90 70 50 30 ∆ =4 ∆ =1.33 ∆ =0.44 ${
m \Delta}$ =0.15 0 10 20 30 40 m 50 60 70 80 Slika 2.5: Ugao ${
m a}$ izmed $^{-}$ u susjednih gradijentnih vektora G tokom procesa rekonstrukcije koji se obavio kroz 80 iteracija (plava boja). Parametar ∆ je mijenjan na svakih 20 iteracija. 2.3.2 Kriterijum za smanjenje parametra Δ Vidjeli smo da je za preciznu rekonstrukciju signala od velike važnosti pravilan odabir parametra Δ. Upotreba velike vrijednosti ovog parametra dovodi do brzog smanjenja greške, odnosno približavanja minimumu mjere, ali sa druge strane prisutan je veliki bias koji je proporcionalan sa Δ . Tada je potrebno smanjiti vrijednost parametra Δ kako bi se smanjio bias, a povećala tačnost rekonstrukcije. Jedan od izazova predstavlja detekcija trenutka kada je potrebno smanjiti parametar ∆. Posmatrajmo ugao izmed⁻u dva susjedna gradijentna vektora G. Označimo trenutni gradijentni vektor u iteraciji m sa Gt(n) = G(m)(n) i vektor u prethodnoj iteraciji m - 1 sa Gp(n) = G(m-1)(n). Ugao izmed⁻u ova dva vektora je αm = arccos ΣNn=−01 Gp(n)Gt (n) ΣnN=−01 G2p(n) ΣnN=−01 Gt2(n) . (2.16) √√ Analizirajmo prethodno definisani ugao za slučaj signala kome nedostaje 100 od 256 odbirka, a koji ima 4 nenulta koeficijenta u DFT domenu. Rekonstrukcija posmatranog signala je uspješno izvršena kroz 80 iteracija algoritma, pri čemu je parametar ∆ ažuriran svakih 20 iteracija kao $\Delta \leftarrow \Delta/3$. Na slici 2.5 je prikazan ugao (2.16) tokom iteracija. Vidimo da je za početnu vrijednost Δ = 4 ugao rastao od 15∘ ka 180∘. Takod⁻e, nakon smanjenja parametra ∆ dolazi do smanjenja ugla izmed⁻u vektora, a nakon toga kroz naredne iteracije do ponovnog rasta. Prekidi u funkciji ugla, koji se vide na grafiku, su posljedica činjenice da u prvoj iteraciji nakon smanjenja 🛆 ugao nije računat, jer se isti računao samo za iteracije u kojima 🛆 ima istu vrijednost. Posmatrajući grafik, uočavamo da veliki broj iteracija algoritma ima izuzetno velik ugao izmed⁻u gradijenata, a koji znači da je pomak ka tačnom rješenju minimalan. Sa svakim smanjenjem parametra 🛆 dolazi do pada ugla i u prvoj narednoj iteraciji dolazi do značajnog xs (n) 5 0 -5 50 100 n 150 200 250 a) 1.2 1 |Xs(k)| 0.8 0.6 0.4 0.2 -100 -50 k 0 50 100 b) xr (n) -5 10 1 5 0 50 100 n 150 200 250 c) 2 |Xr (k)| 1.5 1 0.5 -100 -50 k 0 50 100 d) 10 -1 Δ 10 -3 10 -5 e) 0 10 20 30 m 40 50 60 70 α ugao u stepenima 170 130 90 50 f) 0 10 20 30 m 40 50 60 70 Slika 2.6: Rekonstrukcija signala gradijentnim algoritmom sa adaptivnim ∆. a) Početni

16/02/2021

Similarity Report

signal kome nedostaje 120 odbiraka, od ukupno 256; b) DFT početnog signala; c) rekonstruisani signal; d) DFT rekonstruisanog signala; e) parametar Δ; f) Ugao izmed⁻u susjednih gradijenata α korišćen kao indikator za promjenu Δ. skoka u uglu, a koji znači i povećanje tačnosti rekonstrukcije. Iz prethodno navedenog primjera, vidimo bi za slučaj kada ugao pred⁻e odred⁻enu vrijednost, parametar Δ trebalo smanjiti i samim tim izbjeći iteracija algoritma u kojima isti oscilira oko postignutog minimuma a imajući u vidu bias izračunat u prethodnoj sekciji. Vidimo da odabir ugla od 170º (narandžasta linija na grafiku) daje dobre rezultate, i da značajno smanjuje broj potrebnih iteracija algoritma [3, 54]. Takod⁻e, iskustveno se pokazalo da se dobri rezultati postižu ažurirajući ∆ kao ∆ ← ∆/3. Primjer 2.3. Posmatrajmo N = 256 odbiraka signala x(n) = 2sin(2 π f1t)+4cos(2 π f2t)+0.5sin(2 π f3t), na intervalu [0,1- Δ t] sa korakom Δ t = 1/N, gdje su f1 = 8, f2 = 18 i f3 = 35. Pretpostavimo da NA = 120 odbiraka ovog signala na slučajnim pozicijama nedostaje i da ih je potrebno rekonstruisati. Rekonstrukcija je izvršena gradijentnim algoritmom, a rezultati rekonstrukcije su prikazani na slici 2.4. Na grafiku a) je prikazan početni signal kome nedostaje 120 od 256 odbiraka. Na grafiku pod b) je prikazan DFT domen ovog signala. Na graficima c) i d) su prikazani vremenski i transformacioni domen rekonstruisanog signala. Vidimo da je rekonstrukcija uspješno izvršena. Na grafiku pod e) je prikazana vrijednost parametra ∆ tokom iteracija. Parametar ∆ je ažuriran kao ∆ ← $\Delta/3$ u situacijama kada je ugao izmed $^-$ u dva susjedna gradijentna vektora bio veći od 170 $^\circ$. Trenuci promjene ugla su označeni narandžastim trouglićima. Na grafiku f) je prikazan ugao izmed⁻u dva susjedna gradijentna vektora tokom iteracija. Narandžastim trouglićima su takod⁻e označene iteracija kada je ugao premašio 170∘. Ugao je računat samo za iteracije u kojima je korišćena ista vrijednost parametra Δ, pa otuda prekidi u funkciji ugla u trenucima promjene Δ. 2.4 Primjeri rekonstrukcije za DFT domen i ℓ1 normu Vidjeli smo da algoritam 1 na strani 45 podrazumijeva upotrebu proizvoljnog transformacionog domena. U ovoj sekciji ćemo detaljnije obraditi slučaj rekonstrukcije signala rijetkih u DFT domenu, pri čemu će takod⁻e biti primijenjeni prethodno opisani kriterijum za smanjenje parametra 🛆 kao i kriterijum za detekciju željene preciznosti. Pseudokod algoritma prikazan je u algoritmu 2. Prilikom računanja tačnosti rekonstrukcije moguće je koristiti razne mjere. U ovoj tezi će se u zavisnosti od primjera, kao mjera tačnosti koristiti neka od sljedećih mjera greške rekonstrukcije • MAE - Srednja apsolutna greška (Mean Absolute Error) MAE = 1 NM n \in NM $\sum |x(n)-xr(n)|$ Obratimo pažnju da je greška računata samo za pozicije nedostupnih odbiraka NM . Ovu grešku moguće je izraziti i u dB kao MAE [dB] = 20 log NM n \in NM|x(n)-xr(n)| 1 · MSE - Srednja kvadratna greška (Mean Squared Error) MSE = 1 NM n \in NM \sum (x(n)-xr(n))2 Ova greška je takod⁻e računata samo za nedostajuće odbirke. • SRR - Odnos signala i greške rekonstrukcije (Signal to Reconstruction error Ratio) $N\Sigma$ -1

 $|x(n)| 2 \text{ SRR} \quad [dB] = 10 \quad \log n = 0 \quad N \sum -1 \quad |x(n) - xr \quad (n)| 2$

n=0 Algoritam 2 Gradijentni algoritam za DFT domen sa adaptivnim ∆ i kriterijumom za procjenu tačnosti Require: • Skup pozicija nedostajućih odbiraka NM • Mjerenja, odnosno dostupni odbirci signala y(n) • Tačnost Tri izražena u [dB] 1: xr(0)(n) ← y(n) 2: xr(0)(n) ← 0

3: $m \leftarrow 0$ 4: $\Delta \leftarrow max$ |xr (0)(n)| 5: repeat 6: repeat 7: xr (m+1)(n) \leftarrow xr (m)(n)

11

2

8:

for

qi ∈ NM do \triangleleft za n ∈/ NM \triangleleft za n ∈ NM \triangleleft za svako n \triangleleft za i = 1, 2, . . . , M 9: g(i) ← N 1 N Σ -1 DFT x(rm)(n) + $\Delta\delta$ (n - qi) - DFT $xr(m)(n) - \Delta\delta(n - qi) = 0 x(rm+1)(qi) \leftarrow |x|(m)(qi) - g(i)[]| | | | | []| 10: | | | 11: end for 12: Gt (i) = g(i) 13: m \leftarrow m + 1 \lhd za qi$ ∈ NM, gdje je i = 1, 2, . . . , M 14: until arccos Σi=1 Gp(i)Gt(i) ΣiM=1 G2p(i) ΣiM=1 Gt2(i) √< 170∘ ⊲ Računa se od druge iteracije za svako Δ 15: $\Delta \leftarrow \Delta/3 \sqrt{16}$: Gp(i) \leftarrow Gt (i) $\sum n \in NM xr(m)(n)$ 2 17: until 10 log10 $\sum n \in NM xt(||n|) - xr(m)(n)$ 2 < Tri | | 18: xr(n) ← xr(m)(n) | | | | Output: • Rekonstruisani signal xr(n) 1.2 1 |Xs(k)| 0.8 0.6 0.4 0.2 -100 -50 k 0 50 100 a) 2 |Xr (k)| 1.5 1 0.5 -100 -50 0 k 50 100 b) 10 1 10 -1 $m \Delta$ 10 -3 10 -5 c) $m \alpha$ ugao u stepenima 0 10 20 30 m 40 50 60 70 170 130 90 50 d) 10 1 0 10 20 30 m 40 50 60 70 10 -1 MAE 10 -3 10 -5 10 -7 10 -9 e) 10 1 0 10 20 30 m 40 50 60 70 10 -3 MSE 10 -7 10 -11 10 -15 f) 0 10 20 30 m 40 50 60 70 Slika 2.7: Rekonstrukcija signala gradijentnim algoritmom sa adaptivnim Δ . a) DFT signala kome nedostaje 120 odbiraka, od ukupno 256; b) DFT rekonstruisanog signala; c) parametar ∆; d) Ugao izmed⁻u susjednih gradijenata α korišćen kao indikator za promjenu ∆; e) MAE tokom iteracija f)MSE tokom iteracija. Ova mjera u obzir uzima odbirke na svim pozicijama. U nastavku će detaljno biti analizirana dva primjera rekonstrukcije. Jedan kod koga je broj dostupnih odbiraka odbiraka značajno veći od broja nenultih koeficijenata signala, i drugi gdje su te dvije veličine uporedive. Primier 2.4. Posmatrajmo N = 256 odbiraka signala $x(n) = sin(2\pi f1t)+4cos(2\pi f2t)+0.4sin(2\pi f3t), na intervalu [0,1-\Delta t] sa$ korakom ∆t = 1/N, gdje su f1 = 16, f2 = 24 i f3 = 48. Pretpostavimo da NA = 128 (50%) odbiraka ovog signala na slučajnim pozicijama nedostaje i da ih je potrebno rekonstruisati. Rekonstrukcija je izvršena gradijentnim algoritmom, a rezultati rekonstrukcije su prikazani na slici 2.7. Na grafiku a) je prikazan DFT početnog signala Xs(k) kome nedostaje 128 od 256 odbiraka. Na grafiku pod b) je prikazan DFT domen rekonstruisanog signala Xr(k). Na grafiku pod c) je prikazana vrijednost parametra ∆ tokom iteracija, a njegova vrijednost je ažurirana kao ∆ ← ∆/3 u situacijama kada je ugao izmed⁻u dva susjedna gradijentna vektora prikazan pod d) bio veći od 170°. Vidimo da je rekonstrukcija izvršena kroz 69 iteracija, a algoritam je obustavljen kada je procijenjena greška računata sa (2.6) prešla vrijednost od 150 dB. Trenuci promjene ugla su označeni narandžastim trouglićima. Na grafiku e) je prikazana srednja apsolutna greška (MAE), dok je na grafiku pod f) prikazana srednja kvadratna greška (MSE). Vidimo da je MAE nedostajućih odbiraka reda 10-8, dok je MSE reda 10-15. Još veća preciznost bi se postigla da je vrijednost ulaznog parametra Tri povećana. Primjer 2.5. Posmatrajmo N = 64 odbirka signala x(n)=sin(2π f1t)+4cos(2π f2t)+0.4sin(2π f3t)+5sin(2π f4t)+0.3cos(2π f5t)+2sin(2π f6t), na intervalu [0,1- Δ t] sa korakom ∆t = 1/N, gdje su f1 = 4, f2 = 13, f3 = 22, f4 = 26, f5 = 30 i f6 = 48. Pretpostavimo da NA = 32 (50%) odbiraka ovog signala na slučajnim pozicijama nedostaje i da ih je potrebno rekonstruisati. Posmatrani signal se sastoji od 12 koeficijenata u DFT domenu. Rekonstrukcija je izvršena gradijentnim algoritmom, a rezultati rekonstrukcije su prikazani na slici 2.8. Na grafiku a) je prikazan DFT početnog signala Xs(k) kome nedostaju 32 odbirka. Na grafiku pod b) je prikazan DFT domen rekonstruisanog signala Xr(k). Na grafiku pod c) je prikazana vrijednost parametra ∆ tokom iteracija, a njegova vrijednost je ažuriran kao $\Delta \leftarrow \Delta/3$ u situacijama kada je ugao izmed⁻u dva susjedna gradijentna vektora prikazan pod d) bio veći od 170°. Rekonstrukcija je izvršena kroz 335 iteracija, a algoritam je obustavljen kada je procijenjena greška računata sa (2.6) prešla vrijednost od 100 dB. Trenuci promjene ugla su označeni narandžastim trouglićima. Na grafiku e) je prikazana srednja apsolutna greška (MAE), dok je na grafiku pod f) prikazana srednja kvadratna greška (MSE). Vidimo da je MAE nedostajućih odbiraka reda 10-5, dok je MSE reda 10-10. Nešto manja tačnost rekonstrukcije u odnosu na prethodni primjer, je posljedica manje vrijednost ulaznog parametra Tri. Imajući u vidu da je odnos dostupnih odbiraka i broja nenultih koeficijenata u DFT domenu originalnog signala mnogo manji nego za prethodni primjer, to su i grafici c) - f) nešto drugačiji. Naime, pri svakoj promjeni parametra 🛆 bilo je potrebno mnogo više iteracija da ugao izmed⁻u susjednih gradijenata pred⁻e

vrijednost od 170∘, a što za sobom povlači veći broj iteracija za svako ∆ a 1.5 |Xs(k)| 1 0.5 10 1 -20 0 k 20 a) 2.5 2 1.5 |Xr (k)| 1 0.5 -20 k 0 20 b) $m \Delta$ 10 -1 10 -3 10 -5 c) m q ugao u stepenima 50 100 150 m 200 250 300 170 120 70 d) 50 100 150 m 200 250 300 10 0 MAE 10 -2 10 -4 10 -6 e) 10 1 50 100 150 m 200 250 300 MSE 10 -3 10 -7 10 -11 f) 50 100 150 m 200 250 300 Slika 2.8: Rekonstrukcija signala gradijentnim algoritmom sa adaptivnim ∆. a) DFT signala kome nedostaju 32 odbiraka, od ukupno 64; b) DFT rekonstruisanog signala; c) parametar Δ; d) Ugao izmed⁻u susjednih gradijenata α korišćen kao indikator za promjenu ∆; e) MAE tokom iteracija f)MSE tokom iteracija. 1.5 1 0.5 m=0 -20 0 k 20 2 m =3 1.5 1 0.5 2.5 -20 0 k 20 2 1.5 1 0.5 m =6 -20 0 k 20 2.5 2 1.5 1 0.5 m =9 -20 0 k 20 2.5 2 1.5 1 0.5 m =150 -20 2 |Xr (k)| 1.5 m =1 1 0.5 2.5 -20 k 0 20 2 1.5 1 0.5 m =4 2.5 -20 k 0 20 2 1.5 1 0.5 m =7 -20 k 0 20 2.5 2 1.5 1 0.5 m =10 -20 k 0 20 2.5 2 1.5 1 0.5 m =270 2 1.5 1 0.5 m =2 2.5 - 20 k 0 20 2 1.5 1 0.5 m = 5 - 20 k 0 20 2.5 2 1.5 1 0.5 m = 8 - 20 k 0 20 2.5 2 1.5 1 0.5 m = 40 - 20 k 0 20 2.5 2 1.5 1 0.5 Rekonstruisani signal 0 k 20 -20 0 k 20 -20 Slika 2.9: DFT domen rekonstruisanog signala tokom iteracija. k 0 20 samim tim i veći broj iteracija cijelog algoritma. Ipak, algoritam je i u ovom slučaju izvršio uspješnu rekonstrukciju. Na slici 2.9 je prikazan DFT domen signala koji rekonstruišemo tokom iteracija. Vidimo da je u prvih 10 iteracija dolazilo do postepenog smanjenja šuma u DFT domenu, prouzrokovanog netačnim vrijednostima odbiraka koje rekonstruišemo. U 40-oj iteraciji se jasno poznaju vrijednosti koeficijenata koji imaju nenultu vrijednost, te sve ostale iteracije algoritma imaju za cilj da procijenjenu grešku aproksimacije 2.6 svedu na željeni nivo, koji je ulazni podatak algoritma. Činjenica da je koeficijente moguće prepoznati mnogo prije postizanja željene tačnosti će kasnije biti iskorišćena u jednoj od realizacija GA, a u kombinaciji sa algoritmom koji rekonstrukciju vrši u jednom koraku [44]. 2.4.1 Uticaj rijetkosti i broja dostupnih odbiraka na potencijalnu primjenu U uvodnom dijelu je rečeno da analizom mjernih matrica, tačnije njihovih svojstava kao što su izometrija, koherencija, rank ili spark možemo doći do teorijske potvrde da li je rekonstrukciju moguće izvršiti ili ne. Ipak pomenuta teorija ne govori ništa o načinu kako je moguće rekonstrukciju izvršiti. Provjera mogućnosti rekonstrukcije je uz sve to i NP-hard problem [10], što znači da ga nije moguće riješiti u razumnom vremenu za iole realnu postavku u pogledu dimenzija signala. U ovoj sekciji će se ovom problemu pristupiti na drugi način. Naime, GA će biti analiziran statistički za razne odnose broja dostupnih odbiraka NA i rijetkosti u DFT domenu K. Za svaki konkretni odnos pomenutih veličina biće izvršeno 100 nezavisnih realizacija rekonstrukcije a srednja vrijednost dobijenih rezultata prikazana grafički kao funkcija ove dvije promjenljive. Posmatrajmo N = 128 odbiraka signala S x(n) = Σ Ai cos(2πkin/n + φi). i=1 Rijetkost ovog signala K = 2S u DFT domenu je mijenjana od 2 do N/2 sa korakom 2, dok je broj dostupnih odbiraka mijenjan od 2 do 124 sa korakom 4. Amplitude signala Ai su odabrane slučajno iz opsega 1 ≤ Ai ≤ 2. Imajmo u vidu da jedna odabrana amplituda proizvodi dva koeficijenta u DFT domenu. Frekvencije posmatranih signala su takod⁻e odabrane slučajno iz opsega 1 ≤ ki ≤ 63 dok su faze slučajne vrijednosti od 0 do 2π . Za svaku kombinaciju broja dostupnih odbiraka NA i rijetkosti K formirano je 100 signala kod kojih parametri imaju prethodno definisane slučajne vrijednosti. Svaki od 100 kreiranih signala je rekonstruisan GA pri čemu je za procijenjenu tačnost uzeto Tri = 110 dB. Rezultati dobijeni za svih 100 iteracija su usrednjeni i prikazani na slici 2.10. Na slici u prvom redu lijevo je prikazano vrijeme potrebno da se rekonstrukcija izvrši. Bijelom bojom je označen region u kojem nije bilo moguće izvršiti rekonstrukciju. Kao kriterijum je korišćena maksimalna apsolutna greška. Naime ukoliko je ova vrijednost bila ispod 0.01, za svaku od 100 nezavisnih realizacija, smatrano je da je broj dostupnih odbiraka NA 20 40 60 80 100 120 broj dostupnih odbiraka NA 20 40 60 80 100 120 broj dostupnih odbiraka NA 20 40 60 80 100 120 vrijeme 20 40 60 rijetkost K MAE 20 40 60 rijetkost K MSE 20 40 60 rijetkost K [s] 0.2 0.15 0.1 0.05 0 6 5 4 3 2 1 broj dostupnih odbiraka NA 20 40 60 80 100 120 broj dostupnih odbiraka NA 20 40 60 80 100 120 60 50 20 40 40 30 60 20 80 10 broj dostupnih
odbiraka NA 100 120 broj iteracija - m 20 40 60 rijetkost K MAE 20 40 60 rijetkost K SNR 20 40 60 rijetkost K m [dB] [dB] 300 200 100 0 0-50 -100 150 100 50 0 Slika 2.10: Statistička analiza performansi gradijentnog algoritma u DFT domenu. Rekonstrukcija je vršena za razne kombinacije broja dostupnih odbiraka NA i rijetkosti K. Na graficima su prikazani: vrijeme rekonstrukcije, broj iteracija, MAE, MAE [dB], MSE i SRR. Prikazani rezultati dobijeni su usrednjavanjem rezultata za 100 nezavisnih realizacija. rekonstrukcija uspješno izvršena max|x(n)−xr(n)| < 0.01. Vidimo da granica izmed⁻u regiona u kojem je rekonstrukciju bilo moguće izvršiti i onog u kojem je makar jedna od 100 realizacija bila neuspješna, prati pravu NA = 2K. Plave nijanse na grafiku označavaju bržu rekonstrukciju dok, žute nijanse impliciraju sporiju rekonstrukciju. Uočavamo da je region uz donju ivicu koja odgovara velikom broju dostupnih odbiraka (malom broju nedostajućih) ima najtamnije nijanse, tj. najbržu rekonstrukciju. Možemo, dakle zaključiti da vrijeme rekonstrukcije zavisi od broja odbiraka koje treba rekonstruisati. Sa druge strane vidimo da se najsvjetlije nijanse prostiru duž pravca NA = 2K u graničnom regionu u pogledu mogućnosti rekonstrukcije. Vrijeme rekonstrukcije stoga zavisi i od odnosa broja dostupnih odbiraka i rijetkosti signala. Objašnjenje za prvu od dvije prethodno uočene pojave jeste da broj nedostajućih odbiraka utiče na broj računanja gradijenata mjere pa otuda i pomenuta veza. Druga uočena pojava se objašnjava činjenicom da odnos broja dostupnih odbiraka i rijetkosti utiče na broj iteracija potreban da se postigne željena tačnost. Na grafiku gore desno je prikazan broj iteracija potrebnih da bi se rekonstrukcija izvršila. I u ovom slučaju, bijelom bojom je označen region gdje rekonstrukcija po prethodno definisanom kriterijumu nije bila moguća. Uočavamo da je region duž pravca NA = 2K zahtijevao najveći broj iteracija što potvrd⁻uje prethodni zaključak da je on uticao na vrijeme potrebno da se izvrši rekonstrukcija. Na graficima u drugom redu je prikazana srednja apsolutna greška izražena u apsolutnom iznosu i u dB. Tamno plava boja odgovara regionu gdje je rekonstrukcija izvršena sa velikom preciznošću, a koji se nalazi ispod prave NA = 2K, dok svjetlije nijanse označavaju region gdje rekonstrukcija nije bila moguća. Slični se zaključci mogu izvesti i za grafik desno na kome su rezultati prikazani u dB. Vidimo da je greška u dB reda veličine greške Tri što potvrd⁻uje korektnost izraza za procjenu greške (2.6). U posljednjem redu lijevo je prikazana srednja kvadratna greška, a rezultati prate prethodne tvrdnje, dok je na desnom grafiku prikazan odnos signal šum izražen u dB. Žutom bojom su označene visoke vrijednost odnosa signal šum što odgovara tačnijim rekonstrukcijama. Vidimo da je za slučaj uspešnih rekonstrukcija ovaj odnos bio u opsegu od 100 do 140 dB. 2.5 Pored⁻enje sa drugim algoritmima Imajući u vidu da se rekonstrukcija signala u CS može vršiti na više načina u ovoj glavi će posebna pažnja biti posvećena pored⁻enju gradijentnog algoritma kojim se bavi ova teza, sa nekim drugim često korišćenih algoritmima. Kako je GA iz klase konveksnih optimizacionih algoritama koji rekonstrukciju vrše oslanjajući se na ℓ1 normu to će pored-enje biti vršeno sa dva algoritma iz ove klase: ℓ1-magic algoritmom iz softverskog paketa za rekonstrukciju signala u CS konveksnim programiranjem [37], kao i LASSO algoritmom [36]. 2.5.1 Pored⁻enje sa ℓ1 magic algoritmom U ovoj sekciji će biti upored[−]ene performanse rekonstrukcije GA i ℓ1-magic algoritma u pogledu brzine i tačnosti rekonstrukcije [59]. Posmatrajmo N = 256 odbiraka signala S x(n) = Σ Ai sin($2\pi kin/n + \varphi i$). i=1 Rijetkost ovog signala K = 2S u DFT domenu je mijenjana od 2 do N/2 sa korakom 2, dok je broj dostupnih odbiraka mijenjan od 2 do 252 sa korakom 4. Amplitude signala Ai su broj dostupnih odbiraka NA GA vrijeme 50 100 150 200 250 20 40 60 80 100 120 rijetkost K broj dostupnih odbiraka NA GA MAE 50 100 150 200 250 20 40 60 80 100 120 rijetkost K broj dostupnih odbiraka NA GA SNR 50 100 150 200 250 20 40 60 80 100 120 rijetkost K [s] 0.4 ℓ1–magic vrijeme 0.3 broj dostupnih odbiraka NA 50 100 0.2 150 0.1 200 0 250 20 40 60 80 100 120 rijetkost K ×10 -3 5 ℓ1-magic MAE 4 broj dostupnih odbiraka NA 50 3 100 2 150 1 200 0 20 250 40 60 80 100 120 rijetkost K [dB] 150 100 broj dostupnih odbiraka NA ℓ1-magic SNR 50 100 150 50 200 0 250 20 40 60 80 100 120

16/02/2021

Similarity Report

rijetkost K [s] 0.4 0.3 0.2 0.1 ×10 -3 5 4 3 2 1 0 [dB] 150 100 50 0 Slika 2.11: Statistička analiza performansi GA i ≹1-magic algoritma u DFT domenu. Rekonstrukcija je vršena za razne kombinacije broja dostupnih odbiraka NA i rijetkosti K. Na graficima su prikazani: vrijeme rekonstrukcije, MAE, i SRR. Prikazani rezultati dobijeni su usrednjavanjem rezultata za 100 nezavisnih realizacija. odabrane slučajno iz opsega 1 ≤ Ai ≤ 2, pri čemu jedna amplituda proizvodi 2 DFT koeficijenta. Frekvencije posmatranih signala su takod⁻e odabrane slučajno iz opsega $1 \le ki \le 127$ dok su faze slučajne vrijednosti od 0 do 2π. Za svaku kombinaciju broja dostupnih odbiraka NA i rijetkosti K formirano je 100 signala kod kojih parametri imaju prethodno definisane slučaine vrijednosti. Svaki od 100 kreiranih signala je rekonstruisan sa GA sa procijenjenom tačnosti od Tri = 110 dB, a nakon toga sa ℓ1-magic algoritmom. Rezultati dobijeni za svih 100 iteracija su usrednjeni i prikazani na slici 2.11. Kao kriterijum kojim se odred-uje da li je rekonstrukcija uspješna ili ne, je korišćena maksimalna apsolutna greška. Za vrijednosti ove greške ispod 0.01 smatrano je da je rekonstrukcija uspješno izvršena max |x(n) - xr(n)| < 0.01. U prvom redu je prikazano vrijeme rekonstrukcije za oba algoritma, dok je bijelom bojom prikazan dio gdje nije izvršena rekonstrukcija u skladu sa prethodno definisanim kriterijumom. Možemo uočiti da su je region gdje je GA uspješno izvršio rekonstrukciju veći nego u slučaju ℓ1-magic algoritma. Sa druge strane postoje regioni gdje je ℓ1-magic algoritam imao bolje performanse u pogledu brzine. Na slici 2.12 je detaljnije prikazano pored⁻enje ova dva algoritma u pogledu brzine rekonstrukcije. Bijelom bojom je prikazan region gdje ni jedan od dva pomenuta algoritma nije imao uspješnu rekonstrukciju, plavom bojom je prikazan region gdje je GA bio brži, ili je samo on izvršio rekonstrukciju, dok je crvenom bojom označen region gdje je ℓ1-magic algoritam brže rekonstruisao signal, ili je samo on izvrši uspješnu rekonstrukciju. Vidimo da je u pogledu brzine GA pokazao bolje performanse. Takod⁻e, uočavamo da je ℓ1-magic algoritam pokazao bolje performanse u pogledu brzine rekonstrukcije u regionu koji odgovara manjim vrijednostima parametra K, tj za signale koji su više rijetki. Sa druge strane GA je bio dominantan u regionu gdje je broj dostupnih odbiraka veliku. Uočene pojave se mogu objasniti prirodom rada dva algoritma. Kod GA koji rekonstrukciju vrši u vremenskom domenu, promjenljive koje on rekonstruiše su nedostajući odbirci kojih je malo za velike vrijednosti parametra NA = N − NM, dok ℓ1-magic algoritam vrši rekonstrukciju u DFT domenu, rekonstruišući koeficijente u domenu rijetkosti kojih je K. U drugom redu slike 2.11 su prikazane MAE za oba algoritma, i vidimo da je GA rekonstruisao signal sa manjom greškom, u skoro svim opsezima, što se potvrd⁻uje i na graficima u trećem redu gdje je prikazan SRR za oba signala. Vidimo da je SRR za GA bio u opsegu 120 do 150 dB dok su za slučaj ℓ1-magic algoritma te vrijednosti niže, uglavnom u opsegu 50 do 100 dB. Za ℓ1-magic algoritam su korišćena podrazumijevana (default) podešavanja. 2.5.2 Pored⁻enje sa ISTA algoritmom za LASSO minimizaciju U uvodnoj sekciji ove teze opisan je ISTA algoritam za LASSO minimizaciju. U ovoj sekciji će biti upored⁻ene performanse pomenutog algoritma sa GA u pogledu brzine i tačnosti rekonstrukcije [60]. Za domen uzet je DCT domen. Pseudokod GA korišćenog za rekonstrukciju je dat u algoritmu 3, gdje je parametar µ korišćen u koraku 10, konstanta za normalizaciju poredjenje brzine rekonstrukcije GA brži ℓ1–magic brži 50 broj dostupnih odbiraka NA 100 150 200 250 20 40 60 80 100 120 rijetkost K Slika 2.12: Pored⁻enje brzine rekonstrukcije GA i ℓ1-magic algoritma za različite vrijednosti parametara NA i K. Vrijednosti su usrednjene za 100 nezavisnih realizacija. Plavom bojom označeni su regioni gdje je GA bio brži, a crvenom regioni gdje je 🕴 magic algoritam bio brži. gradijenta, koja zavisi od transformacije, i koja u ovom slučaju iznosi μ = 51N |DCT [δ (n – n0)]| 1 , gdje je n0 proizvoljna pozicija. Posmatrajmo signal x(n) koji je rijedak u DCT domenu K x(n) = Σ Ai cos π (2n – 1)(ki – 1) (2.17) i=1 (2N) gdje su Ai i ki slučajne amplitude i frekvencije komponenti signala x(n). Algoritmi su testirani za različite vrijednost rijetkosti K = {1,3,...,63} i broja dostupnih odbiraka, NA = {2,6,10,...,126}. Za ISTA algoritam su razmatrane razne

vrijednosti parametra λ , i to λ = {0.001,0.0025,0.005,0.01}. Kao optimalna vrijednost uzeto je λ = 0.005. Za svaku kombinaciju rijetkosti K i broja dostupnih odbiraka NA je izvršeno 100 nezavisnih rekonstrukcija za 100 slučajno formiranih signala. Ukoliko je za svaku od 100 realizacija bio zadovoljen kriterijum max|x(n)-xr(n)| < 0.01 smatrano je da je za tu kombinaciju K i NA, rekonstrukcija uspješno izvršena posmatranim algoritmom. Na slici 2.13 u gornjem redu su prikazane performanse oba algoritma u pogledu brzine rekonstrukcije. Bijelom bojom su prikazani regioni gdje svaki od algoritama (GA na lijevom a ISTA na desnom grafiku) nijesu mogli izvršiti rekonstrukciju. Vidimo da je GA generalno brži od ISTA algoritma. Prosječno Algoritam 3 Gradijentni algoritam za DCT domen sa adaptivnim Δ i kriterijumom za procjenu tačnosti Require: • Skup pozicija nedostajućih odbiraka NM • Mjerenja, odnosno dostupni odbirci signala y(n) • Tačnost Tri izražena u [dB] 1: xr(0)(n) \leftarrow y(n) 2: xr

qi ∈ NM do ⊲ za i = 1, 2, . . . , M 9: g(i) ← \sum DCT x(rm)(n) + Δδ (n − qi) − DCT xr(m)(n) − Δδ (n − qi) N−1 k=0 []| 10: xr(m+1)(qi) ←|| $x(m)(qi) - \mu g(i) || []| || || 11: end for 12: Gt (i) = g(i) ⊲ za qi ∈ NM, gdje je i = 1, 2, ..., M 13: m ← m + 1 14: until arccos$ ∑i=1 Gp(i)Gt(i) ∑iM=1 G2p(i) ∑iM=1 Gt2(i) √ < 170° ⊲ Računa se od druge iteracije za svako ∆ 15: ∆ ← ∆/3 √ 16: Gp(i) ← Gt (i) ∑n∈NM x(rm)(n) 2 17: until 10 log10 ∑n∈NM xt(||n)−x(rm)|(n) 2 < Tri 18: xr(n) ← xr(m)(n) | | | | | | Output: • Rekonstruisani signal xr(n) vrijeme rekonstrukcije za GA je reda 0.03s, dok je za ISTA algoritam 0.07s. Ipak za mali broj kombinacija rijetkosti i broja dostupnih odbiraka u graničnom pojasu oko prave NA = 2K ISTA algoritam je imao veći broj tačnih rekonstrukcija nego GA. Na donjem grafiku su prikazani SRR za oba algoritma. Uočava se da je GA i pored brže rekonstrukcije imao značajno tačnija rješenja, gdje je SRR general bio iznad 100 dB (sa par izuzetaka, koji odgovaraju plavoj boji), dok je vrijednost SRR za ISTA algoritam bila oko 50 dB. 0 GA vrijeme broj dostupnih odbiraka NA 50 100 0 20 40 60 rijetkost K GA SNR broj dostupnih odbiraka NA 0 50 100 0 20 40 60 rijetkost K [s] 0.25 0.2 0.15 0.1 0.05 0 [dB] 150 100 50 0 broj dostupnih odbiraka NA 0 ISTA vrijeme 50 100 0 20 40 60 rijetkost K 0 ISTA SNR broj dostupnih odbiraka NA 50 100 0 20 40 60 rijetkost K [s] [dB] 0.25 0.2 0.15 0.1 0.05 0 150 100 50 0 Slika 2.13: Statistička analiza performansi GA i ISTA algoritma u DCT domenu. Rekonstrukcija je vršena za razne kombinacije broja dostupnih odbiraka NA i rijetkosti K. Na graficima su prikazani: vrijeme rekonstrukcije i MAE [dB]. Prikazani rezultati dobijeni su usrednjavanjem rezultata za 100 nezavisnih realizacija. Glava 3 Implementacija gradijentnih algoritama Potencijalna primjena svakog algoritma zavisi i od mogućnosti njegove efikasne implementacije koja direktno utiče i na same performanse algoritma. Implementacija će biti sagledana iz dva ugla: softverskog i hardverskog. Osnovne softverske implementacije već su razmatrane u prethodnim glavama u algoritmima 2 za DFT domen i 3 za DCT domen. U ovoj glavi će biti analizirane dvije softverske implementacije gradijentnih algoritama koje donekle odstupaju od standardnih realizacija a koje su nastale u cilju poboljšanja performansi standardne verzije GA. Prva od njih će podrazumijeva kombinaciju GA sa algoritmom koji rekonstrukciju vrši u jednom koraku. Kao domen rijetkosti u ovoj realizaciji razmatrana je DFT. Kako je cilj kombinovanja ovih algoritama postizanje boljih performansi u pogledu brzine rekonstrukcije, to su dva algoritma kombinovana na način da GA otkloni nedostatke u pogledu mogućnosti primjene algoritma koji rekonstrukciju vrši u jednom koraku, a koji je za slučajeve gdje ga je moguće primijeniti izuzetno brz.

Druga softverska realizacija biće kombinacija GA sa algoritmom za postavljanje praga razvijenim za Hermitski transformacioni domen (HT). I u ovom slučaju motiv je sličan kao u prethodnom. Gradijentni algoritam bi se iskoristio da pripremi signal za upotrebu algoritma za postavljanje praga, a što bi na kraju rezultiralo brzom i tačnom rekonstrukcijom. Nakon pomenutih softverskih realizacija, implementacija će biti sagledana iz ugla hardvera. Biće predstavljena arhitektura za hardversku realizacija osnovne verzije GA. Svi koraci potrebni za rekonstrukciju signala biće svedeni na osnovne hardverske elementa, pogodne za praktičnu implementaciju. Pokazaće se da je GA izuzetno pogodan za efikasnu hardversku realizaciju, imajući u vidu da je računski najzahtjevniji dio GA moguće paralelizovati. Tako će ukupno vrijeme potrebno za rekonstrukciju signala biti nezavisno od dimenzija signala i broja dostupnih odbiraka/mjerenja. 3.1 Softverske implementacije U prethodnom dijelu teze predstavljena je osnovna softverske realizacije gradijentog algoritma (Algoritam 2) za DFT domen i (Algoritam 3) za DCT domen. Predstavljeni algoritmi realizovani su u vidu koda za MATLAB/Octave okruženje i korišćeni za rekonstrukcije signala u dosadašnjem dijelu teze. Imajući u vidu da se realizacije za druge domene rijetkosti i eventualno druge mjere koncentracije lako mogu izvesti na osnovu ta dva algoritma, u ovom dijelu će pažnja biti posvećena realizacijama dva GA koji odstupaju od standardne forme. Oba algoritma su nastala kao posljedica želje da se postupak rekonstrukcije dodatno ubrza [61, 62]. Predložene implementacije su date u vidu pseudokoda, što ih čini pogodnim za softverske realizacije. 3.1.1 Kombinacija gradijentnog i algoritma koji rekonstrukciju vrši u jednom koraku U ovoj sekciji ćemo predstaviti algoritam koji je kombinacija dva algoritma koji rekonstrukciju signala vrše na potpuno različite načine. Prvi od dva algoritma je GA, kojim se i bavi ova teza. Dobra osobina GA je da se može primijeniti u mnogim praktičnim situacijama i da čak i za veliki odnos broja dostupnih odbiraka i rijetkosti (granica ide oko NA = 2K, sekcija 2.4.1) može uspješno rekonstruisati signal. Drugi algoritma koji će se koristiti vrši rekonstrukciju u jednom koraku. Ovaj algoritam rekonstrukciju vrši u domenu rijetkosti (rekonstruiše Xr(k)) razdvajajući komponente koje pripadaju signalu od šuma koji potiče od nedostajućih odbiraka. Kada algoritam uspješno detektuje poziciji na kojima se nalaze komponente signala, rekonstrukcija se može izvršiti u jednom koraku. Ipak, u zavisnosti od broja nedostajućih odbiraka, nije uvijek moguće uspješno detektovati poziciji na kojima se nalaze komponente signala. Da bi se poziciji uspješno detektovale, koristiće se GA, koji približavajući komponente u vremenskom stvarnim vrijednosti, smanjuje šum u DFT domenu, a samim tim pozicije komponenti bivaju uočljivije i lakše za detekciju. Nakon uspješne detekcije poziciji komponenti signala, isti će se rekonstruisati u jednom koraku. Algoritam u jednom koraku Algoritam koji rekonstrukciju vrši u jednom koraku (SIRA - single iteration reconstruction algorithm) se zasniva na pretpostavci da su pozicije komponenti signala u domenu rijetkosti poznate. Formula kojom dolazimo do rekonstruisanog signala, kada su poznate pozicije koeficijenata izvedena je i data u sekciji 1.3.3 X = (AHKAK)-1AHKy. (3.1) gdje je matrica AK dobijena iz matrice A kada su zadržane kolone na pozicijama iz skupa K (skup pozicija koeficijenata signala u DFT domenu), dok su sve ostale kolone uklonjene. Prethodna relacija se može zapisati i kao X = piny (AK) y, gdje je sa piny (AK) označena pseudo inverzna matrica matrice AK . Postupak odred⁻ivanja pozicija koeficijenata u transformacionom domenu je tema kojom su se bavili mnogi rekonstrukcioni algoritmi [30, 44, 45]. Implementacija kombinacije gradijentnog i algoritma koji rekonstrukciju vrši u jednom koraku Prednosti oba algoritma su iskombinovane kako bi se precizna i brza rekonstrukcija, koju omogućava algoritam koji rekonstrukciju vrši u jednom koraku (SIRA), mogla primijeniti u velikom broju aplikacija, što važi za gradijentni algoritam (GA). Problem SIRA algoritma se ogleda u činjenici da pozicije koeficijenata signala u DFT domenu nije moguće detektovati za veliki broj nedostajućih odbiraka. U tom slučaju šum prouzrokovan nedostajućim odbircima po vrijednosti prevazilazi komponente signala. Na slici 3.1a) je

prikazan ovaj slučaj. Zelenim kružićima je označeno K = 10 komponenti signala, dok je crvenim krstićima označeno K = 10 najvećih koeficijenata u DFT domenu. Kao što možemo vidjeti, 10 komponenti signala se ne poklapa sa 10 najvećih vrijednosti u DFT domenu. SIRA algoritam u ovom slučaju nije moguće primijeniti jer komponente signala nije moguće odrediti. Ovaj problem se može prevazići upotrebom GA. Izgled DFT domena nakon jedne, dvije i tri iteracije GA je prikazan na slici 3.1b), c) i d), respektivno. Vidimo da već nakon tri iteracije GA, možemo detektovati pozicije K komponenti signala, pod uslovom da znamo broj komponenti signala (poklapaju se zeleni kružići i crveni krstići). Sada umjesto da nastavimo sa iteracijama GA, rekonstrukciju možemo izvršiti u jednom koraku koristeći relaciju (3.1), i na taj način dobijamo signal Xs(m) koji ukoliko je rekonstrukcija bila tačna, predstavlja DFT transformaciju rekonstruisanog signala, koju inverznom DFT transformacijom lako prevodimo u vremenski domen. Ipak, i dalje ostaje problem detektovati situaciju kada smo došli do tačne rekonstrukcije, a nakon primjene SIRA metoda, koji je korišćen nakon svake od iteracija GA. Ovaj problem je otklonjen na sljedeći način: • Odradimo inverznu DFT transformaciju dobijenog signala Xs(m), čime dobijamo signal xs(m) • Uporedimo vrijednosti odbiraka signala xs(m) i x(r0) na pozicijama iz skupa dostupnih odbiraka NA, i ako je ukupna apsolutna greška manja od nekog unaprijed definisanog praga, možemo smatrati da je rekonstrukcija uspješno izvršena n∈NA ∑ x(r0) – x(sm) < 0.01 | | | Algoritam 4 Gradijentni algoritam i rekonstrukcija u jednom koraku Require: • Skup pozicija nedostajućih odbiraka NM • Mjerenja, odnosno dostupni odbirci signala $y(n) • Rijetkost signala K 1: xr(0)(n) \leftarrow y(n) 2: xr(0)$ (n) ← 0

3: $m \leftarrow 0$ 4: $\Delta \leftarrow max$ |xr (0)(n)| 5: NA = N \ NM 6: repeat 7: repeat 8: Xr (m)(k) \leftarrow DFT{ xr 36 (m)(n)} 9: $p \leftarrow argmax$ Xr(m)(k)

k1,k2,...,kK 10: ACS \leftarrow A(NA,IIP) 11: Xs(k) = ACTSACS -1ACTSy | 12: xs(n) = I(DFT{Xs()k}) 13: if $\sum xs(n) - x(r0)(n) < 0.01$ then n \in NA 14: 15: xr(nII) $\leftarrow xs(n)$ | kraj algoritma 16: end if 17: xr(m+1)(n) $\leftarrow xr(m)(n)$ 18: for qi \in NM do 19: Xr+(k) \leftarrow DFT x(rm) (n) + $\Delta\delta$ (n - qi) 20: Xr-(k) \leftarrow DFT [x(rm) (n) - $\Delta\delta$ (n - qi)] 21: g(i) \leftarrow

N 1 N∑-1 |X[r +(k)| - |Xr -(k)| k=0 22: x(rm+1)(qi) ← x(

m)(qi) - g(i) 23:

end for 24: $m \leftarrow m + 1$ 25: until nije zadovoljen kriterijum za smanjenje \triangle 26: $\triangle \leftarrow \Delta/3$ 1 27: until nije postignuta

željena preciznost 28: xr(n) ← xr(m)(n) Output: • Rekonstruisani signal xr(n) ⊲ za n ∈/ NM ⊲ za n ∈ NM ⊲ za svako n ⊲ za i = 1, 2, . . . , M Xr(m)(k) 100 50 0 m =0 a) -64 -32 0 32 64 100 50 0 m =1 b) -64 -32 0 32 64 100 50 0 m =2 c) -64 -32 0 32 64 100 50 0 m =3 d) -64 -32 0 32 64 100 50 0 m =10 e) -64 -32 0 32 64 100 50 0 m =40 f) -64 -32 0 k 32 64 Slika 3.1: Mogućnost

16/02/2021

Similarity Report

primjene SIRA algoritma tokom gradijentne rekonstrukcije. DFT domen tokom iteracija GA: a) početno stanje; b) nakon prve iteracije; c) nakon druge iteracije; d) nakon treće iteracija; e) nakon 10. iteracije; f) nakon 40. iteracije. Zelenim kružićima su označene poziciji koeficijenata signala. Crvenim krstićima je označeno K najvećih koeficijenata. Pseudokod predložene implementacije GA u kombinaciji sa SIRA je dat u algoritmu 4. Za razliku od standardnog GA, koraci 7 – 11 su dodati kako bi se detektovale komponente signala i izvršila rekonstrukcija SIRA algoritmom. Provjera tačnosti rekonstrukcije je izvršena u koracima 12 – 15. Napomenimo još da je moguće vrlo lako implementirati i varijaciju pomenutog algoritma u kojoj bi rekonstrukciju SIRA algoritmom vršili nakon svake 2 ili 3 iteracije GA i tako eventualno izbjegli par SIRA rekonstrukcija u početnim iteracijama GA. Takod⁻e, predložena implementacija podrazumijeva da je poznat broj komponenti signala koje želimo rekonstruisati. Kako bismo provjerili performanse predložene implementacije, posmatrali smo različite postavke za rekonstrukciju. Tako su za dužine signala razmatrane vrijednost od N = 128, N = 256 i N = 512, dok su se broj dostupnih odbiraka NA i rijetkost signala kretali u opsegu gdje je očekivano da GA može izvršiti rekonstrukciju. Za svaku od 12 različitih postavki izvršeno je 50 nezavisnih realizacija. Rezultati su prikazani u tabeli 3.1, gdje su: N - dužina signala, K rijetkost signala u DFT domenu, NA - broj dostupnih odbiraka, SIRA rec - broj uspješnih rekonstrukcija SIRA algoritmom, GA rec - broj uspješnih rekonstrukcija GA, GA [s] - vrijeme potrebno da se izvrši rekonstrukcija GA, GASI rec - broj uspješnih rekonstrukcija predloženom realizacijom, GASI [s] - vrijeme rekonstrukcije predloženom implementacijom i Odnos - količnik vremena GA i predložene implementacije. Srednje vrijeme rekonstrukcije je računato samo za one realizacije u kojima je detektovana uspješna rekonstrukcija za posmatrani metod. Odnos vremena prikazan u posljednjoj koloni, koji zapravo predstavlja koliko je puta brža rekonstrukcija predloženom implementacijom, je računata samo za slučajeve kada je sa oba algoritma (GA i GASI) detektovana uspješna rekonstrukcija. Za SIRA algoritam nije računato vrijeme rekonstrukcije, jer je osnovna verzija ovog algoritma, bez dijela za prepoznavanja pozicija komponenti signala [30,44,45] u malom broju slučajeva mogla uspješno rekonstruisati signal. Razlog je taj što su komponente šuma u većini slučajeva bile iznad najnižih komponenti signala. Uspješnom rekonstrukcijom smo smatrali slučajeve kada je ukupna apsolutna greška bila manja od 0.01 N−1 n=0 ∑ |xr − x| < 0.01 gdje je x originalni signal, a xr rekonstruisani signal. Posmatrajući tabelu, možemo zaključiti da je predložena implementacija za date postavke bila mnogo efikasnija u pogledu vremena od GA. Ipak treba imati na umu da se najveće ograničenje ove implementacije ogleda u činjenici da moramo pretpostaviti rijetkost signala. Ukoliko pokušamo sa većom vrijednošću za K od tačne, dolazimo u opasnost da algoritam rekonstruiše signal koji na pozicijama dostupnih odbiraka (u vremenskom domenu) ima iste vrijednosti kao originalni signal, ali da na pozicijama nedostajućih odbiraka dobijemo potpuno pogrešne vrijednosti. Statistička analiza mogućnosti primjene predložene implementacije Kako bismo analizirali mogućnost primjene predložene implementacije, posmatraćemo N = 128 odbiraka signala S x(n) = 5 Ai $\cos(2\pi kin/N + \phi i)$. i=1 Rijetkost ovog signala K = 2S u DFT domenu je varirana od 2 do N/2 sa korakom 2, dok je broj dostupnih odbiraka mijenjan od 2 do 124 sa korakom 4. Amplitude signala Ai su odabrane slučajno iz opsega 1 ≤ Ai ≤ 2, pri čemu jedna amplituda proizvodi 2 DFT koeficijenta. Tabela 3.1: Performanse rekonstrukcije za razne vrijednost parametara N, K i NM. Rezultati su usrednjeni za 50 nezavisnih realizacija. N K NA SIRA

rec GA rec [s] GASI rec [s] **50 0**. Odnos 128 20 96 39 01 50 0. 0027 128 15 68 19 2 50 0. 04 50 0. 003 17 128

13 48 1 42 0.20 50 0.008 42 128 10 32 2 17 0.28 49 0.015 59 256 40 192 36 50 0.05 50 0.004 14 256 32 140 6 50 0.25 50 0.013 20 256 16 98 14 50 0.34 50 0.014 29 256 10 64 14 50 0.76 50 0.023 48 512 52 384 48 50 0.18 50 0.011 17 512 48 282 4 50 0.51 50 0.032 17 512 32 202 3 50 1.03 50 0.054 22 512 20 126 2 50 2.49 50 0.112 27 Tabela 3.2: Prosječna vrijednost broja iteracija GA potrebnih da bi se mogla primijeniti rekonstrukcija u jednom koraku za dužinu signala N = 128. 37 1 1 1 1 2 2 2 2 2 Broj dostupnih odbiraka NA 41 1 1 1 2 2 2 2 3 3 45 1 1 2 2 2 2 3 3 49 1 2 2 2 3 3 4 5 53 1 2 2 2 4 4 4 9 15 57 2 2 3 3 4 6 5 9 15 61 3 3 4 4 7 7 12 25 29 65 3 3 5 8 9 17 28 - - 69 4 8 11 14 18 42 41 - - 73 4 8 15 23 39 - - - 77 6 11 17 28 - - - - - 81 13 19 - - - - - - Rijetkost K 14 16 18 20 22 24 26 28 30 20 broj dostupnih odbiraka NA 40 60 80 100 120 ubrzanje rekonstrukcije 10 20 30 40 50 60 rijetkost K 80 70 60 50 40 30 20 10 0 Slika 3.2: Ubrzanje rekonstrukcije kao funkcija rijetkosti K i broja dostupnih odbiraka NA. Bijela boja odgovara regionu gdje oba algoritma nijesu imala uspješnu rekonstrukciju u minimum 90% realizacija. Frekvencije posmatranih signala su takod⁻e odabrane slučajno iz opsega 1 \leq ki \leq 63 dok su faze slučajne vrijednosti od 0 do 2 π . Za svaku kombinaciju broja dostupnih odbiraka NA i rijetkosti K formirano je 50 signala kod kojih parametri imaju prethodno definisane slučajne vrijednosti. Svaki od 50 kreiranih signala je rekonstruisan i sa GA sa procijenjenom tačnosti od Tri = 100 dB, a nakon toga sa predloženom realizacijom (GASI). Upored⁻ene su brzine rekonstrukcije i rezultati pored⁻enja su su prikazani na slici 3.2. Bijelom bojom su označeni regioni gdje oba algoritma nijesu imala rekonstrukciju u preko 90% realizacija. Vidimo da se predloženom realizacijom postiže ubrzanje rekonstrukcije od 10 do 80 puta. U tabeli 3.2 je prikazan broj iteracija GA koji je bio neophodan da bi se mogla primijeniti realizacija u jednom koraku. Crticama su prikazane kombinacije NA i K za koje nije bilo moguće izvršiti rekonstrukciju u najmanje 90% realizacija. Vidimo da broj iteracija potrebnih da bi se primijenila realizacija u jednom koraku ima najveće vrijednost za region blizak pravoj NA = 2K. Ovaj region se poklapa sa onim koji je važio za oblast primjene GA i njegove performanse. Razlog je taj što u ovom regionu šum prouzrokovan nedostajućim odbircima vrlo lako prevazilazi komponente signala, pa je potrebno više iteracija da vrijednost šuma padne ispod najmanje komponente signala. 3.1.2 Rekonstrukcija koeficijenata signala rijetkih u hermitskom domenu upotrebom gradijentnog algoritma Vidjeli smo da je gradijentni algoritam moguće kombinovati i sa drugim algoritmima, prije svega sa algoritmom koji rekonstrukciju vrši u jednom koraku. Slučaj kada je signal rijedak u DFT domenu je prikazan u prethodnom odjeljku, a ovdje će biti prikazana realizacija za slučaj signala koji su rijetki u hermitskom domenu. Hermitska transformacija - HT Polazeći od hermitskog polinoma p-tog reda Hp(t) = (-1)pet2 dp(det-pt2), hermitska funkcija reda p se može zapisati u sljedećem obliku [57,63-66] ψp(t,σ) = σ2pp! $\sqrt{\pi} - 1/2e - t2/(2\sigma 2)$ Hp(t/σ), (3.2) (3.3) gdje parametar σ služi za skaliranje funkcije, kako bi ista što bolje odgovarala signalu, a samim () tim i što bolje koncentrisala željeni signal (povećala mu rijetkost u hermitskom domenu) [63]. Hermitske funkcije mogu biti izračunate i rekurzivno. Hermitski razvoj se može zapisati kao ∞ s(t) = Σ Cpψp(t,σ), p=0 gdje je Cp hermitski koeficijent p-tog reda sračunat kao ∞ Cp = s(t)ψp(t)dt, p = 0,1,...,N −1. −∫∞ (3.4) (3.5) Za slučaj diskretnih signala konačne dužine N, odabranih u tačno odred⁻enim pozicijama tn koje su proporcionalne korijenima hermitskog polinoma N-tog reda, razvoj (3.4) postaje konačan (ima N sabiraka), a koeficijenti Cp se mogu izračunati pomoću Gaus-Hermitske kvadrature [57, 63–66], i kao takvi predstavljaju preciznu numeričku aproksimaciju integrala (3.5). Pomenuta rekurzivna relacija ima oblik Cp = n Σ =1 [ψ N-1(tn)]2 s(tn), p = 0, 1, ..., N – 1. 1 N ψ p(tn) N (3.6) Zbog jednostavnosti zapisa, trenuci u kojima je signal odabran tn će biti označeni sa n. Vektorski zapis razvoja pomoću N hermitskih funkcija se može zapisati kao s = T-H1C. (3.7) gdje je C = [C0, C1, ...,CN-1]T , s = [s(1), s(2), ..., s(N)]T , a ψ0(1) ψ1(1) . . . ψN-1(1) TH-1 = [ψ0(2) ψ1(2) ··· ψN-1(2)] (3.8) |ψ0(N) ψ1(N) ··· ψN-1 (N) [] Rekonstrukcija u jednom koraku i pozicija nenultih

koeficijenata Za slučaj da su pozicije nenultih koeficijenti u hermitskom domenu poznate, rekonstrukcija se može jednostavno izvršiti u jednom koraku CK = ATPAP -1ATPycs. (3.9) kao što je pokazano u sekciji 1.3.3. Med⁻utim postupak pronalaska pozicija nenultih () koeficijenata i dalje predstavlja problem. U nastavku je prikazan jedan mogući način da se pronad⁻u pozicije koeficijenata u hermitskom domenu. Za nedostajuće odbirke u vremenskom domenu možemo smatrati da imaju nultu vrijednost, odnosno, skup dostupnih odbiraka možemo posmatrati kao skup svih odbiraka, gdje su nedostajući odbirci zahvaćeni impulsnim šumom, inteziteta jednakog vrijednostima nedostajućih odbiraka. Početna diskretna heremitksa transformacija ovakvog signala je CO(p) = $\Sigma NA \Sigma AI \psi p(ni)\psi pI(ni), p = 0, ..., N - 1. K i=1 I=1 N$ (ψN-1(ni))2 (3.10) Hermitski koeficijenti C0(p) ovakvog signala su slučajne varijable. Pokazano je da ovi koeficijenti mogu biti svrstani u dvije grupe [65,66]: • Prva grupa su koeficijenti koji ne odgovaraju komponentama signala p≠pl ∈ P, l = 1, K. Ovi koeficijenti su slučajne varijable srednje vrijednosti 0, i imaju Gausovu raspodjelu, varijanse σN2 = NNA2(NN--N1A2) IΣ=K1 A2I (3.11) koja ne zavisi od pozicije koeficijenta za p≠pl . Ove koeficijente možemo opisati, dakle, sa N (0, σN2). • Druga grupa su oni koeficijenti koji odgovaraju stvarnim komponentama signala, sa indeksima p = pl ∈ P, l = 1 ,, K . Ovi koeficijenti su takod⁻e slučaine varijable ali sa drugačijim karakteristikama od onih kojima je opisana prva grupa koeficijenata. Srednja vrijednost u ovom slučaju je Al NNA , dok je varijansa σs2 (pl) < σN2 : N (Al NNA , σs2(pl)), l = 1 , . . . , K . Varijansa u ovom slučaju zavisi od pozicija pl [65]. Imajuću u vidu prethodne statističke karakteristike, možemo uvesti prag koji razdvaja ove dvije grupe koeficijenata, a samim tim omogućava i detekciju pozicija na kojima se nalaze komponente signala T = 2σ Nerf-1 PNN MN1-K 2σ Nerf-1 PNN N $\sqrt{\approx}\sqrt{1}$, (3.12) () () gdje je vjerovatnoća PNN, na primjer, PNN = 0.99. Da bismo izračunali σN2, potrebno je da znamo vrijednost ΣKI=1 A2I, koja može biti izračunata na osnovu početne HT C0, kao ∑Np=-01 NNA Cp 2 , Cp ∈ C0. U ovom slučaju varijansa ima vrijednost [65] σN2 = NNA2(NN -N1A2) Np Σ =-01 NA N | | | - Cp 2, Cp \in C0. (3.13) | | Uvodeći β = log 1 - PN2/NN dolazimo do jednačine za prag detekcije koeficijenata signala | () T = σN − 4/π − aβ + (4/π + aβ)2 − 4aβ /a, (3.14) $\sqrt{\sqrt{}}$ gdje je a = 0.147. [] Kada amplitude komponenti Al imaju približne vrijednosti, i kada postoji dovoljno veliki broj mjerenja M, tada predloženi prag lako detektuje sve pozicije svih komponenti signala P^ = arg{[C0(p)] > T} [65]. Med⁻utim, česta je situacija da komponente signala imaju različite vrijednosti (teže ih je detektovati) i da nemamo dovoljno mjerenja da u jednom koraku detektujemo sve komponente signala. Tada se mora primijeniti iterativna procedura za svaki novi skup P^. Naime, na osnovu početnog vektora koeficijenata C0, estimira se prvi skup pozicija komponenti signala P^ = arg{|C0(p)| > T}. Nakon toga kreiramo matricu A1 = AP koristeći samo one kolone matrice A sa indeksima P^. Nakon toga se koristeći pseudo-inverziju CK = AT1 A1 −1AT1 ycs dobijaju prvi koeficijenti. Na osnovu njih se računa signal s1 = A1CK, koji se koristi za () računanje greške e = ycs - s1. Ukoliko važi e = 0, rješenja je pronad⁻eno i obustavlja se algoritam. Med⁻utim, ukoliko to nije slučaj, pronad⁻ene komponente se uklanjaju iz signala ycs, i tako dobijamo signal e = ycs – s1. U nastavku procedure, ovaj signal se ponaša kao novi signal, a skup detektovanih pozicija P^ se proširuje na isti način kao i u prvom koraku. Procedura se iterativno nastavlja, dok se ne dod⁻e do rješenja, ili dok se ne postigne željena preciznost. Presudo kod ove procedure se može pronaći u [65], a modifikovana verzija se nalazi u sljedećoj Algorithm 5 Gradijentni algoritam i rekonstrukcija u jednom koraku za hermitski domen Input: Vektor mjerenja y, mjerna matrica Α, željena preciznost ε, predefinisani broj iteracija GA LG, vektor pozicija dostupnih odbiraka signala NA dužine NA 1: P² \leftarrow 0/ 2: e \leftarrow y 3: a \leftarrow 0.147 4: l \leftarrow 0 5: $\Delta \leftarrow$ max |y(0)(n)| n 6: β ← log 1 − PN2/NM ⊲ PNN = 0.99 je konstanta vjerovatnoće [57] 7: Postavimo početne vrijednosti signala s kao s(n) ← () y(n) za n ∈/ NA { 0 za n ∈ NA 8: while llell2 > ε do 9: s ← G R A D R E C(s, Nx , LG , I , Δ) 10: I ← I + LG 11: C0 ← AT e 12: CG

← H[s] \triangleleft H[·] označava HT operator 13: σ N ← $\sqrt{NNA2(NN--N1A2)}$ Np=-01 NA Cp 2, Cp \in C0 \sum N 14: T ← σ N -4/ π -a β + $\sqrt{(4)}$ / π+aβ)2-4aβ | 15: p[^] ←arg $\sqrt{|CG|>T}$ a 16: P[^] ← P[^] ∪ p[^] 17: AP ← kolone matrice A selektovane na osnovu P[^] 18: CP ← pinv(AP)y 19: e — y - APCP 20: end while Output: • Rekonstruisani koeficijenti signala C sa vrijednostima CP na pozicijama iz skupa P^, i sa 0 na ostalim pozicijama. sekciji. Važno je napomenuti da je proces pseudo inverzije numerički zahtjevna operacija. Upravo zbog toga je i razmatrana predložena implementacija koja za cilj ima da kombinovanjem prethodno opisanog algoritma sa GA poboljša performanse rekonstrukcije. Implementacija predloženog algoritma Proces iterativnog pronalaska koeficijenta signala je vremenski zahtjevan proces. Prag T koji se koristi za detekciju koeficijenata signala nekada, u zavisnosti od amplituda i broja mjerenja, ne može efikasno razdvojiti komponente signala od šuma. Upravo zbog toga je i predložena kombinacija opisanog algoritma sa GA. Na ovaj način, GA je iskorišćen u cilju Algorithm 6 Rekonstrukcija gradijentnim algoritmom 1: function GRADREC(s,Nx,LG,I, Δ) 2: m \leftarrow 1 3: while m < I + LG do 4: s(m+1) \leftarrow s(m) 5: for ni ∈ Nx do 6: x1 ← s(m) 7: x1(ni) ← x1(ni) + Δ 8: x2 ← x(m) 9: x2(ni) ← x2(ni) - Δ 10: C1 ← HT[x1] ⊲ HT[·] označava HT operator 11: C2 \leftarrow HT[x2] 12: s(m+1)(ni) \leftarrow s(m)(ni) – $\|C1\|1-\|C2\|1$ 13: end for N 14: m \leftarrow m + 1 15: end while return s \leftarrow s(m) 16: end function lakše detekcije koeficijenata, dok je sa druge strane iskorišćena mogućnost brze rekonstrukcije u jednom koraku za slučaj kada su nam pozicije koeficijenata poznate. Pseudo kod predložene implementacije je dat u algoritmu 5. gdje je LG = 10 iteracija GA korišćeno u svakom pozivu GA predstavljenog u algoritmu 6. Važno je pomenuti da se rekonstrukcija gradijentnim algoritmom predstavljena u algoritmu 6 u svakoj iteraciji glavnog algoritma predstavljenog u algoritmu 5, uvijek nastavlja od trenutka do kojeg je došla u prethodnoj iteraciji, što je omogućeno korišćenjem pomoćnog signala s i vrijednosti I. Tako izračunati signal s i odgovarajuća HT ovog signala CG sračunata u koraku 12 se koriste u koraku 15 prilikom odred⁻ivana pozicija komponenti signala p^ koristeći teorijski prag T. Obratimo pažnju da je prilikom računanja standardne devijacije oN (korak 13), a koja se koristi prilikom računanja praga T, korišćen skup koeficijenata CO. To znači da je gradijentni algoritam korišćen kako bi se pragom T mogli uspješnije detektovati koeficijenti koji odgovaraju signalu. Na ovaj način je smanjen broj pseudo inverzija koje je potrebno izvršiti da bi došli do potpune rekonstrukcije. Primjer 3.1. Posmatrajmo signal koji u HT domenu ima 7 komponenti. Takod⁻e, pretpostavimo da je samo NA = 55 odbiraka na slučajnim pozicijama od ukupno N = 200 odbiraka dostupno. Posmatrajući početnu estimaciju prikazanu na slici 3.3 a), uočavamo da je šum u HT domenu jak i da nije moguće detektovati pozicije 7 koeficijenata koje odgovaraju stvarnim komponentama signala. Nakon LG = 10 iteracija gradijentnog algoritma opisanog sa Algoritmom 6 koeficijenti signala su značajno pojačani, dok je šum redukovan. Na grafiku b) je prikazan HT domen nakon ovih iteracija. Plavom bojom su prikazani koeficijenti, dok je prag računat u koraku 14 algoritma 1.5 početna vrijednost hermitskih koeficijenata (apsolutna vrijednost) 1 0.5 0 a) 3 0 50 HT koeficijenti, iteracija 1 100 150 200 2 1 0 b) 0 50 4 100 HT koeficijenti, iteracija 2 150 200 2 0 c) 0 4 50 100 150 rekonstruisani i originalni koeficijenti (apsolutna vrijednost) 200 2 0 d) 0 50 100 150 200 p Slika 3.3: Rekonstrukcija signala koji je rijedak u hermitskom domenu. Početna estimacija prikazana je na grafiku a). Na graficima b) i c) su prikazani koeficijenti iz koraka 11 algoritma 5 (plavom bojom) i prag (crvenom bojom) za prvu i drugu iteraciju. Na grafiku pod d) su prikazani rekonstruisani koeficijenti (plavom bojom) i originalni koeficijenti (crvenom bojom). 5 prikazan crvenom bojom. Vidimo da se nakon prve iteracije, prikazane na grafiku b), može uspješno detektovati 6 od 7 koeficijenata signala. Kako nijesu svi koeficijenti detektovani, glavni algoritam ponovo poziva gradijentni algoritam kako bi se koeficijenti i šum još više razdvojili. Obratimo pažnju da je novi prag, nakon prve iteracije postavljen na osnovu jednog koeficijenta koji nije detektovan, pa otuda je i njegova vrijednost manja na grafiku c) u odnosu na prvu vrijednost na grafiku b). Imajući u vidu

16/02/2021

Similarity Report

da je vrijednost praga sada značajno manja, može se desiti da i neke komponente koje ne pripadaju signalu budu detektovane kao one koje potiču od signala. Ipak, one neće prouzrokovati probleme u rekonstrukciji, jer će njihova vrijednost nakon rekonstrukcije biti 0, sve dok je zadovoljena nejednakost card[P^] < NA. Na grafiku pod d) je prikazan rekonstruisani signal (plavom bojom), dok su originalni koeficijenti prikazani crvenim kružićima. Vidimo je da predloženi algoritam uspješno rekonstruisao početni signal. 3.2 Arhitektura za hardversku realizaciju gradijentnih algoritama Do sada je u tezi razmatrana i korišćena neka od softverskih realizacija GA. Imajući u vidu da je glavni nedostatak iterativnih algoritama generalno, a samim tim i GA, činjenica da su isti vremenski zahtjevni, to je od velikog interesa razmatranje mogućnosti njihove hardverske implementacije. Jednostavna i efikasna hardverska realizacija sve algoritme čini mnogo atraktivnijim za eventualnu praktičnu primjenu. U ovoj glavi će biti opisana arhitektura za hardversku realizaciju gradijentnog algoritma [67]. lako je GA moguće primijeniti u raznim domenima rijetkosti, kao i koristiti razne mjere koncentracije, u predloženoj hardverskoj arhitekturi je, ne gubeći opštost, razmatran DFT kao domen rijetkosti i ℓ1-norma kao mjera rijetkosti. Takod⁻e, rekonstrukcija je vršena sa konstantnim parametrom ∆, imajući u vidu da je akcenat bio na ubrzanju najzahtjevnije operacije a to je računanje gradijentog vektora G. Predložena arhitektura se sastoji od nekoliko blokova, koji se sastoje od elementarnih komponenti kao što su komponente za računanje DFT upotrebnom brzih FFT algoritama [68], kola za računanje kvadratnog korijena [69, 70], kao i kola za obavljanje elementarnih operacija sabiranja i množenje. Imajući sve ovo u vidu, za predloženu arhitekturu možemo reći da je izuzetno pogodna za FPGA implementaciju. Šema arhitekture za hardversku realizaciju prikazana je na slici 3.4. Ulazni signali označeni su plavom bojom. Prvi od dva ulazna signala je xs(n) = xr(0)(n), koji se dobija kada se vrijednosti nedostajućih odbiraka postave na 0. Ovaj signal uveden je na strani 45. Drugi ulazni signal označen je sa p i predstavlja indikator za pozicije nedostajućih odbiraka. Dužina ovog signala je N, pri čemu na pozicijama iz skupa dostupnih odbiraka ima vrijednost 0, a na pozicijama nedostajućih odbiraka ima vrijednost 1 p(n) = 0 za n ∈ NA { 1 za n ∈ NM Imajući u vidu da je riječ o iterativnom algoritmu, redni broj iteracije je označen sa m. Pri startovanju algoritma, za iteraciju m = 0 ulazni signal xr(0) je smješten u registar označen sa xr(m). Ova operacija kopiranja ulaznog signala se odvija samo jednom, tako da je ista označena isprekidanom strelicom. Ovaj registar će takod⁻e biti izlaz iz algoritma nakon odred⁻enog broja iteracija. U svakoj iteraciji algoritma vektor G se oduzima od trenutnog stanja rekonstruisanog signala xr(m) i na taj način dobijamo signal xr(m+1) xr(m+1) = xr(m) – G(m). Ovaj signal se zatim koristi da se ažurira registar rekonstruisanog signala pri čemu se uvodi m ← m + 1. Isti ovaj signal se takod⁻e koristi kao ulaz u "Blok za korekciju", kako bi se sračunao xr(0) xr(1) xr(2) xr(3) za m=0 x r (m) – Rekonstruisani signal u m-toj iteraciji

 $xr(1) xr(2) xr(3) \dots xr(N) xr(N) ažuriramo xr(M) xr(N)$

m+1) m m+1 abs max Δ p p(1) p(2) p(3) . . . p(N) Blok za korekciju G g(1) g(2) g(3) . . . g(N) Slika 3.4: Arhitektura za hardversku realizaciju gradijentog algoritma u DFT domenu. vektor G za sljedeću iteraciju algoritma. Računski, a samim tim i vremenski, najzahtjevniji dio predstavlja računanje vektora G, a koristeći trenutno stanje rekonstruisanog signala xr(m), vektor pozicija p i konstantu Δ , računatu na početku algoritma kao maksimalna apsolutna vrijednost odbiraka signala xr(0). 3.2.1 Blok za korekciju Blok za korekciju predstavlja ključni dio predložene hardverske realizacije, a njegova hardverska implementacija je prikazana na slici 3.5. Plavom bojom su označeni signali koji predstavljaju ulazne signale: trenutno stanje

16/02/2021

Similarity Report

rekonstruisanog signala xr(m), vektor pozicija p i konstanta Δ . Za poziciju svakog odbirka n = 1, 2, . . . N formiramo dva signala. Prvi je formiran tako što je vrijednost odbirka na posmatranoj poziciji korigovana za + Δ , a drugi tako što je vrijednost odbirka korigovana za - Δ . Tako, za poziciju n = 1 formiramo signale x(rm1

+)(n) = x(rm) (n) + δ (n - 1) x(rm1 -)(n) = x(rm)(n) - δ (n

- 1), $Xr1+xr(1)+\Delta xr(2) \dots xr(N) Xr(m) Xr1-xr(1) xr(1)-\Delta xr(2) xr(2) \dots xr(N) xr(N) Glava 3. Implementacija gradijentnih algoritama <math>\Delta XrN+xr(1) xr(2) \dots xr(N)+\Delta XrN-xr(1) xr(2) \dots xr(N)+\Delta Re{Xr(1)} Im{Xr(1)} F Re{Xr(2)} F Im{Xr(2)} T Re{Xr(N)} Im{Xr(N)} Re{Xr(1)} Im{Xr(1)} F Re{Xr(2)} F Im{Xr(2)} T Re{Xr(2)} T Re{Xr(N)} Im{Xr(1)} F Re{Xr(2)} F Im{Xr(2)} T Re{Xr(2)} T Re{Xr(N)} Im{Xr(1)} Re{Xr(1)} Im{Xr(1)} F Re{Xr(2)} F Im{Xr(2)} T Re{Xr(2)} T Re{Xr(N)} Im{Xr(N)} Re{Xr(1)} Im{Xr(1)} F Re{Xr(2)} F Im{Xr(2)} T Re{Xr(N)} Im{Xr(N)} Re{Xr(1)} Im{Xr(1)} F Re{Xr(2)} F Im{Xr(2)} T Re{Xr(2)} T Re{Xr(N)} Im{Xr(N)} Re{Xr(1)} Im{Xr(1)} F Re{Xr(2)} F Im{Xr(2)} F Im{Xr(2)} T Re{Xr(N)} Im{Xr(N)} Re{Xr(N)} Re{Xr(1)} Im{Xr(1)} F Re{Xr(2)} F Im{Xr(2)} F Im{Xr(2)} T Re{Xr(N)} Im{Xr(N)} Re{Xr(N)} Re{Xr(1)} Im{Xr(1)} F Re{Xr(2)} F Im{Xr(2)} F Im{Xr(2)} T Re{Xr(N)} Im{Xr(N)} Re{Xr(N)} Re{Xr(1)} Im{Xr(1)} F Re{Xr(2)} F Im{Xr(2)} F Im{Xr(2)} T Re{Xr(N)} Im{Xr(N)} Re{Xr(N)} Re{Xr(1)} Im{Xr(1)} F Re{Xr(2)} F Im{Xr(2)} F Im{Xr(2)} T Re{Xr(N)} Im{Xr(N)} Re{Xr(N)} Re{Xr(1)} Im{Xr(1)} F Re{Xr(2)} F Im{Xr(2)} F Im{Xr(2)} T Re{Xr(N)} Im{Xr(N)} Re{Xr(N)} Re{Xr(1)} Im{Xr(1)} F Re{Xr(2)} F Im{Xr(2)} F Im{Xr(2)} T Re{Xr(N)} Im{Xr(N)} Re{Xr(N)} Re{Xr(1)} Im{Xr(1)} F Re{Xr(2)} F Im{Xr(2)} F Im{Xr(2)} T Re{Xr(N)} Im{Xr(N)} Re{Xr(N)} Re{Xr(1)} Im{Xr(1)} F Re{Xr(2)} F Im{Xr(2)} F Im{Xr(2)} F Im{Xr(2)} F Im{Xr(2)} F Im{Xr(N)} Re{Xr(N)} Im{Xr(N)} Re{Xr(N)} Re{Xr(N)}$

^2 ^2 sqrt ^2 ^2 sqrt ^2 sqrt ^2 ^2 sqrt ^2 2 sqrt ^2 ^2 sqrt ^2 ^2 ^2 sqrt ^2 ^2 13

sqrt /N q q(1) q(2) p p(1) . p(2) q(N) p(N) /N Slika 3.5: Implementacija bloka za korekciju. Komponente koje predstavljaju ulaz su označene plavom bojom. Izlaz iz bloka je označen zelenom bojom. Narandžastom isprekidanom linijom su predstavljene operacije koje se obavljaju paralelno. 87 za poziciju n = 2 formiramo signale x(rm2+)(n) = xr(m) (n) + δ (n – 2) x(rm2–)(n) = x(rm)(n) – δ (n – 2), i tako za svaku poziciju zaključno sa n = N. Svaki od ovako formiranih signala prolazi kroz niz dodatnih blokova. Prvi od njih je FFT blok čija je realizacija u FPGA tehnologiji dobro poznata [68]. U ovom bloku se vrši transformacija signala iz vremenskog u domen rijetkosti (DFT). Imajući u vidu da je DFT kompleksna transformacija, svaki od DFT koeficijenata je posmatran kroz dvije vrijednosti, od kojih prva predstavlja realni, a druga imaginarni dio koeficijenta. Kako bismo izračunali apsolutnu vrijednost svakog od kompleksnih DFT koeficijenata, i realni i imaginarni dio svakog od njih su kvadrirani, nakon čega su tako dobijene vrijednost sabrane, i na kraju je sračunat kvadratni korijen tako dobijenog zbira. Računanje kvadratnog korijena U FPGA tehnologiji je takod⁻e obrad⁻eno u literaturi [69,70]. Nakon što je izračunata apsolutna vrijednost DFT koeficijenata na svim pozicijama, dobijene vrijednosti za svaki od N odbiraka su sabrane čime je dobijena vrijednost mjere koncentracije. Razlike ovako sračunatih mjera koncentracije za parove signala x(rm+)(1) i x(rm-)(1), x(rm+)(2) i x(rm-)(2) i tako sve do x(rm+)(N) i xr(m-)(N) su korišćene za dobijanje vrijednost vektora g(n) = {g(1),g(2),...,g(N)}, pri čemu je razlika mjera koncentracije prethodno pomnožena sa odgovarajućim elementima vektora p. Na ovaj način je svaka od dobijenih razlika koja odgovara poziciji dostupnih odbiraka postavljena na 0. Sve dobijene vrijednost su i podijeljene sa N kako bi se izvršila normalizacija dobijenih mjera koncentracije. Razlog računanja razlika mjera koncentracije za sve pozicije n = 1,2,...,N, iako se njihove vrijednosti ne koriste za pozicije dostupnih odbiraka, se ogleda u težnji za kreiranjem što jednostavnije arhitekture. 3.2.2 Analiza složenosti Vrlo je važno uočiti da se opisana procedura računanja vrijednosti gradijenata računa paralelno za svaki odbirak signala xr(m). Ova vrlo bitna činjenica ukazuje da će brzina rekonstrukcije zavisiti samo od vremena potrebnog da se obave operacije za jedan posmatrani odbirak (označeno narandžastom isprekidanom linijom), a ne od broja nedostajućih odbiraka. Na ovaj način se proces

rekonstrukcije odvija brzinom koja je nezavisna od dimenzija signala N (ukoliko zanemarimo malo uvećanje u potrebnom broju operacija prilikom računanja gradijenta za jednu posmatranu poziciju). Imajući u vidu pomenutu osobinu predložene realizacije, dolazimo do zaključka da brzina rekonstrukcije dominantno zavisi od brzine bloka za računanje kvadratnog korijena koji u sistem unosi kašnjenje od 24 takta u standardnoj realizaciji [70]. Sljedeći, vremenski najzahtjevniji blok je FFT čije vrijeme zavisi od dužine signala N, imajući u vidu da je za računanje potrebno log2 N taktova. Generalno, broj taktova potreban da se izračuna gradijentni vektor u jednoj iteraciji GA se može približno izračunati kao P = 1 + log2 N + 3 + 1 + 50 + 1 + 1 + 1 + 1 + 3 pri čemu vrijednosti u sumi odgovaraju blokovima za sabiranje, FFT bloku, bloku za kvadriranje, sabiranje, kvadratni korijen, sabiranje, sabiranje, oduzimanje, množenje (sa 1 ili 0) i množenje, respektivno. Sve prethodne iteracije treba uvećati za još jednu operaciju potrebnu da se izvrši oduzimanje xr(m) – G(m). Sve navedene operacije potrebno je izvršiti u svakoj iteraciji algoritma, i na sve to dodati zanemarljivi broj operacija koje se izvršavaju samo jednom, prilikom računanja parametra 🛆. Glava 4 Primjene gradijentnih algoritama Mogućnosti primjene algoritama koji su analizirani i čije su implementacije predstavljene u prethodnom dijelu teze, će biti predstavljeni u ovoj glavi. Kao jedna od glavnih prednosti gradijentnog algoritma u odnosu na ostale algoritme koji se koriste za rekonstrukciju rijetkih signala jeste mogućnost njegove široke primjene. Tako je ovaj algoritam moguće primijeniti na razne domene rijetkosti, koristeći proizvoljnu mjeru koncentracije. Takod⁻e, ovaj algoritam je pokazao odlične performanse kada je u pitanju rekonstrukcija 2D signala - slika. U prvom dijelu ove glave će biti prikazana varijanta GA koja rekonstruiše slike, koje prirodno imaju rijedak 2D DCT domen. Nakon toga će biti predstavljena mogućnost rekonstrukcije 1D i 2D biomedicinskih signala. Sa tim u vezi, koristiće se ECG signali (signali srčanog ritma) kao primjeri rekonstrukcije 1D signala, dok će se za primjer 2D bio-medicinskih signala koristiti rendgenski snimci. Takod⁻e, u ovoj glavi će biti prikazana mogućnost primjene metoda razvijenih u okviru GA za detekciju impulsnog šuma u signalima. Biće predstavljen direktni i iterativni postupak detekcije odbiraka signala zahvaćenih impulsnim šumom. Važno je istaći da će parametri šuma biti takvi, da nije moguće izvršiti jednostavnu detekciju pozicija zahvaćenih šumom, koristeći neku od metoda sa pragom. Prilikom detekcije pozicija zahvaćenih šumom koristiće se gradijent mjere koji ima centralno mjesto u gradijentnom algoritmu. 4.1 Rekonstrukcija 2D signala - slika U prethodnom dijelu teze smo vidjeli mogućnosti rekonstrukcije signala upotrebnom različitih implementacija gradijentnih algoritama. Uglavnom su to bili 1D signali rijetki u DFT, DCT i HT domenima. U ovom poglavlju ćemo vidjeti mogućnosti i primjere rekonstrukcije 2D signala - slika. Imajući u vidu da se slike javljaju u mnogim aplikacijama, prije svega u oblasti informaciono komunikacionih tehnologija, jasno je da mogućnost primjene GA u ovoj oblasti daje posebnu težinu i značaj ovim metodama. Kao primjere rekonstrukcije slika posmatraćemo sivo skalirane slike sa digitalnih kamera, a nakon toga i slike u boji. 4.1.1 Algoritam Opšte je poznata činjenica da su slike (fotografije) prirodno dobro koncentrisane (rijetke) u 2D-DCT domenu. Upravo ovu činjenicu ćemo iskoristiti za rekonstrukciju nedostajućih piksela u slikama. Skup mjerenja y koji je korišćen kod 1D signala bi u ovom slučaju predstavljao skup dostupnih odbiraka, med⁻utim, imajući u vidu da je za realizaciju algoritma potrebno znanje o pozicijama na kojima se nalaze ti pikseli/mjerenja, to ćemo u ovom slučaju kao zbog jednostavnosti realizacije koristiti 2 signala. Prvi će biti matrica x0 koja na pozicijama nedostajućih odbiraka imati vrijednost 127, dok na ostalim pozicijama ima originalne vrijednosti piksela. Vrijednost 127 je izabrana kao centralna vrijednost u opsegu vrijednosti piksela [0,255]. Drugi će biti matrica P koja ima vrijednosti 1 na pozicijama nedostajućih odbiraka a 0 na pozicijama dostupnih odbiraka. Pseudokod algoritma korišćenog za rekonstrukciju piksela sivo-skaliranih slika je dat u algoritmu 7 [49, 71]. Pozicije piksela će biti označene sa (m,n), dimenzije signala koji rekonstruišemo sa M i N, a iteracije

algoritma sa t. Algoritam 7 Gradijentni algoritam za 2D-DCT domen Require: • Signal x0, dimenzija M × N kome su nedostajući pikseli postavljeni na 127 • Matrica pozicija nedostajućih odbiraka P, dimenzija

 $M \times N$ 1: xr(0)(m, n) \leftarrow x0 (m, n) 2: t \leftarrow 03: $\Delta \leftarrow$ maxm , n |xr(0)(m, n)| 64

4: repeat 5: repeat 6: $xr(t+1)(m, n) \leftarrow xr(t)(m, n) \lhd za svako m i n 7$: for $(mi, n j) \in P(mi, n j) = 1$ do \lhd

8: X+r ← 2D-DCT x(rm

)(m, n) + $\Delta\delta$ (m - mi, n - ni) 9: X- r \leftarrow 2D-DCT [x(rm)(m, n) - $\Delta\delta$ (m - mi, n - ni)] N- 6

1 [] 10: g(i, j) ← ∑ X+r - X-r k=0 11: x(rt+1)(mi, n j) |← x(t)(m|i, n j) - µg(i, j) | | | 12: end for 13: t ← t + 1 14: until nija zadovolen kriterijum za smanjenje Δ 15: Δ ← Δ/3 16: until nije zadovoljena željena preciznost 17: xr(m,n) ← xr(t)(m,n) Output: • Rekonstruisani signal xr(m,n) Komentari: • Kao kriterijum za smanjenje parametra Δ može se koristiti ugao izmed⁻u dva susjedna gradijentna vektora, kao u slučaju 1D signala. • Za vrijednost željene preciznosti, takod⁻e se može koristiti formula korišćena za 1D signale, ovoga puta prilagod⁻ena za 2D signale ∑m,n,P

1 Ukoliko je vrijednost prethodnog izraza već||a od željene tačnost|i koju definišemo u dB, | algoritam možemo smatrati da je algoritam postigao željenu preciznost, i da je potrebno smanjiti parametar Δ . • Parametar µ korišćen u koraku 11 prilikom ažuriranja vrijednosti piksela je računat kao µ= 1 Σ m,n |2D-DCT [δ (m - m0, n - n0)]|, gdje je (m0, n0) proizvoljna pozicija. • Imajući u vidu da su realne dimenzije slika relativno velike u pored⁻enju sa 1D signalima korišćenim u dosadašnjem dijelu teze, to će se ne gubeći opštost, prilikom rekonstrukcije koristiti blokovi dimenzija 8 × 8. Naime, svaka slika će biti posmatrana kao skup blokova dimenzija 8 × 8, od kojih će svaki biti tretiran kao zaseban signal, a pikseli u njemu rekonstruisan na osnovu 2D-DCT domena tog bloka. Ipak, predloženi algoritam je moguće primijeniti i na druge dimenzije, odnosno, koristiti veće blokove ili čitavu sliku. • Nakon rekonstrukcije, vrijednosti piksela su zaokružene na najbliže cijele brojeve iz opsega vrijednosti piksela [0, 255]. Primjer 4.1. Posmatrajmo fotografiju sa digitalne kamere dimenzija 256 × 256, prikazanu na slici 4.1. Pretpostavimo da ovoj slici nedostaje 20% piksela (gornji red lijevo), 40% piksela (srednji red lijevo) i 60% piksela (donji red lijevo). Nedostajući pikseli su prikazani crnom bojom. Prikazane slike rekonstruisane su gradijentnim algoritmom. Rezultati rekonstrukcije za svaki od tri slučaja prikazani su u desnoj koloni. Prilikom rekonstrukcije, slika je

16/02/2021

Similarity Report

izdijeljena na 1024 bloka dimenzija 64 × 64, a svaki od blokova je posebno rekonstruisan, pod pretpostavkom da su blokovi rijetki u 2D-DCT domenu. Vidimo da je algoritam u svim slučajevima uspješno rekonstruisao slike. Takod⁻e, možemo primijetiti da je rekonstrukcija bila bolja za slučaj manjeg broja nedostajućih odbiraka (gornji red), med⁻utim, vidimo da za slučaj velikog broja nedostajućih odbiraka (donji red), nije čak moguće ni naslutitit šta se nalazi na slici prije rekonstrukcije, a algoritam je ipak uspio da rekonstruiše nedostajuće piksele. Pomenimo još Slika 4.1: Rekonstrukcija sivo-skalirane slike kojoj nedostaje 20% piksela (gornji red), 40% piksela (srednji red) i 60%piksela (donji red). Crnom bojom su prikazani nedostajući pikseli. Rekonstruisane slike su prikazane u desnoj koloni. da je rijetkost blokova nad kojim se vršila rekonstrukcija podrazumijevana, te da isti nijesu obrad⁻ivani prije rekonstrukcije, odnosno da imaju i veliki broj malih koeficijenata u domenu rijetkosti. Za slučaj da se slika obradi prije uklanjanja piksela, što je jedna od standardnih procedura u obradi slike (npr. JPEG kompresiji), rezultati rekonstrukcije bi bili još bolji. Ipak, ideja je samo pokazati mogućnosti primjene GA u ovoj oblasti, a detaljna analiza i mogućnosti su potencijalni pravac daljih istraživanja. Slika 4.2: Rekonstrukcija slike u boji kojoj nedostaje 30% piksela (gornji red) i 50% piksela (srednji red). Crnom bojom su prikazani nedostajući pikseli. Rekonstruisane slike su prikazane u desnoj koloni. 4.1.2 Rekonstrukcija slika u boji Imajući u vidu da se svaki od 3 kanala slike u boji (RGB) ponaša kao sivo-skalirana slika, to ćemo prilikom rekonstrukcije slika u boji, za svaki od kanala (RGB) koristiti istu proceduru kao u prethodnoj sekciji. Posmatraćemo istu fotografiju kao u prethodnom primjeru, pri čemu je ovoga puta zadržan svaki od 3 kanala (RGB), slika 4.2. U gornjem redu je prikazan slučaj kada 30% piksela, označenih crnom bojom, nedostaje, dok je u donjem redu prikazan slučaj kada 50% piksela nedostaje. Rezultati rekonstrukcije su prikazani u desnoj koloni. Vidimo da je i ovoga puta algoritam uspješno rekonstruisao nedostajuće piksele. I u ovom slučaju je, kao i u prethodnom, vrijednost piksela nakon rekonstrukcije zaokružena na najbliži prirodan broj, imajući u vidu da isti uzimaju cjelobrojne vrijednosti u opsegu [0, 255]. Jedna od mogućih tema za dalja istraživanja je i kvantizacija koja je kod slika mnogo više izražena nego kod 1D signala. Interesantan osvrt na ovu temu je dat u [72]. 4.2 Rekonstrukcija biomedicinskih signala Bitan aspekt digitalnog monitoringa pacijenata podrazumijeva i mogućnost skladištenja prikupljenih podataka u pacijentovu privatnu arhivu. Ovako prikupljeni podaci mogu se, po potrebi, lako prenositi sa jednog na drugo mjesto i dijeliti med⁻u ovlašćenim medicinskim osobljem, čak i sa onima koji nijesu fizički blizu pacijenata. Na taj način se može postaviti dijagnoza za komplikovane slučajeve a da se ne ide u udaljene specijalizovane bolnice. Takod⁻e, može se izbjeći nepotrebno čekanje i izlaganje potencijalnom riziku u bolnicama. Komunikacija kojom se prenose podaci pacijenata mora biti efikasna i sigurna. Namjerno smanjenje količine podataka koja se prenosi vodi ka bržem, a ujedno i sigurnijem prenosu, imajući u vidu da se ne prenosi kompletan set podataka. Još jedan potencijalni problem koji otežava prenos podataka je i šum. Neki podaci koji se prenose mogu biti oštećeni, pa je njihova rekonstrukcija od izuzetnog značaja za pacijenta. Oblast CS u tom slučaju ima važnu ulogu, jer pruža mogućnost rekonstrukcije nedostajućih podataka. Softver, a ujedno i edukativna platforma za eksperimentisanje sa mogućnostima CS za rekonstrukciju medicinskih signala je prikazana u [39]. U okviru razvijenog softvera postoji baza osnovnih medicinskih signala, kao i mogućnost učitavanja proizvolinih eksternih signala. Na ovaj način, istraživači imaju mogućnost da upored⁻uju razne algoritme za CS i njihove performanse. Medicinsko osoblje, takod⁻e može steći uvid u mogućnosti ovih algoritama i analizirati uticaj njihove primjene na tačnost medicinskih analiza. 4.2.1 Rekonstrukcija rendgen snimaka Rendgen aparat predstavlja jedno od ključnih dijagnostičkih sredstava u radiologiji i modernoj medicini. Rekonstrukcija rendgen snimaka stoga predstavlja veoma interesantnu oblast istraživanja. Rendgen aparat funkcioniše tako što elektro-magnetni X zraci

prolaze kroz ljudsko tijelo i hjihov intenzitet na izlazu biva registrovan. Gustina tkiva kroz koju zraci prolaze je direktno srazmjerna slabljenju zraka. Tako na dobijenom snimku (negativ) crna boja predstavlja regione gdje je bilo manje otpora (meko tkivo), dok bijela boja odgovara tvrdim strukturama (npr. kosti). Imajući u vidu invazivni karakter ovih zraka, čija energija može negativno uticati na ćelije u organizmu, uvijek interesantna oblast za istraživanje jeste način za smanjenja izloženosti pacijenata ovim zracima. Sa tim u vezi razmatrana je mogućnost rekonstrukcije rendgenskih snimaka koji nemaju kompletan set podataka. Analizirane slike su preuzete sa [73]. Na slici 4.3 je prikazana rekonstrukcija snimaka glave, abdomena i nogu za slučaj 30 % nedostajućih piksela. Dimenzije slika su 256 × 256, a prilikom rekonstrukcije su korišćeni blokovi 8 × 8 za koje je smatrano da si rijetki u 2D-DCT domenu. Vidimo da su rekonstruisane slike izuzetno dobrog kvaliteta, i da su rendgen snimci zbog svog specifičnog izgleda i načina nastanka, izuzetno pogodni za potencijalnu primjenu CS metoda. Slika 4.3: Rekonstrukcija rendgen slika kojima nedostaje 30% piksela. U gornjem redu je prikazan snimak glave, u srednjem redu snimak abdomena, dok je u donjem redu prikazan snimak nogu. Rekonstruisane slike su prikazane u desnoj koloni. 1 kompletan ECG signal 0.5 0 -0.5 -1 a) 0.5 0 1 2 3 QRS kompleks 4 vrijeme [ms] 5 0.4 0.3 6 7 8 početna HT 9 0 0.2 -0.5 0.5 diskretni indeks vremena rekonstruisani QRS kompleks 20 40 60 b) 0.1 0 0.8 0.6 20 rekonstruisana HT p 40 60 c) 0 -0.5 20 40 60 diskretni indeks vremena e) 0.4 0.2 0 rekonstruisani originalni 20 40 60 p d) Slika 4.4: Rekonstrukcija QRS kompleksa: a) Kompletan ECG signal; b) selektovani QRS kompleks, gdje su plavom bojom prikazani dostupni odbirci, a crvenom bojom nedostajući; c) početna HT signala prikazanog pod b); d) originalni (crvena boja) i rekonstruisani (plava boja) QRS kompleks; e) originalni (crvena boja) i rekonstruisani (plava boja) koeficijent 4.2.2 Rekonstrukcija ECG signala Primjer medicinskog signala koji se može vrlo uspješno rekonstruisati upotrebom predloženog algoritma jeste i ECG signal, tačnije njegov QRS kompleks. Posmatrajmo ECG signal preuzet sa [74], prikazan na slici 4.4 a) [62]. Djelovi ECG signala koji su veoma dobro koncentrisani u HT domenu su QRS kompleksi. Upravo ovi signali se koriste u dijagnostičke svrhe. Jedan takav izdvojeni QRS kompleks je prorijed⁻en prema proceduri opisanoj u [63]. Nakon toga ovaj signal je prikazan na grafiku b), pri čemu je NA = 60 odbiraka dostupno (plava boja) od ukupno N = 69. Preostali, nedostajući, odbirci su prikazani crvenom bojom. Prikazani signal je rekonstruisan gradijentnim algoritmom a rezultati rekonstrukcije su prikazani na graficima d) i e). na grafiku d) je prikazan rekonstruisani QRS kompleks, pri čemu je crvenom bojom prikazan originalni signal, a plavom bojom rekonstruisani signal. Na grafiku e) su prikazani koeficijenti rekonstruisanog signala pri čemu su plavom bojom takod⁻e prikazani rekonstruisani a crvenom originalni koeficijenti. 4.3 Detekcija i uklanjanje impulsnog šuma Jedan od doprinosa ove teze jeste i primjena gradijentnih algoritama u detekciji i uklanjanju impulsnog šuma [58]. U ovoj i narednoj sekciji će biti predstavljene metode koje se oslanjaju na gradijentni algoritam a čiji je cilj detekcija i eliminacija šuma. Više je puta rečeno da se nedostajući odbirci mogu javiti iz više razloga. Jedan od njih može biti fizička nedostupnost ili oštećenje, odnosno, situacija u kojoj je do nedostajućih odbiraka došlo neželjeno. Drugi razlog nedostajanja odbiraka, može biti njihovo namjerno uklanjanje (npr. L-statistika [75–78]) u slučajevima kada su neki od njih zahvaćeni šumom velikog intenziteta [5, 75, 76]. Obije prethodne situacije, mogu se posmatrati kao CS postavke, za slučaj da su signali koje posmatramo rijetki. Štaviše, za slučaj L-statistike kada dolazi do namjernom uklanjanja odbiraka iz vremenskog domena, gradijentni algoritam koji za razliku od drugih rekonstrukcionih algoritama vrši rekonstrukciju upravo u vremenskom domenu, se nameće kao logičan izbor za analizu i potencijalnu primjenu. Slučajevi kada odbirci zahvaćeni šumom mogu biti detektovani i uklonjeni upotrebnom L-statistike su razmatrani u [76, 79]. U ovoj sekciji će biti prikazani rezultati iz [58] u kojima je napravljen korak dalje i posmatrani su slučajevi kada odbirke signala zahvaćene šumom nije

moguće detektovati koristeći robustne metode kao što je L-statistika. Prvi korak u predloženoj proceduri će biti nasumična pretraga skupa odbiraka koji su zahvaćeni šumom. Nakon što nasumično odaberemo skup pozicija koje će biti uklonjene, na osnovu preostalih odbiraka ćemo izvršiti rekonstrukciju uklonjenih odbiraka. Ukoliko nakon rekonstrukcije dobijemo značajno povećanje koncentracije znaćemo da smo slučajnim odabirom uklonili sve odbirke zahvaćene šumom. Ipak ovaj metod možemo koristiti samo u slučajevima kada je broj odbiraka koji su zahvaćeni šumom relativno mali. Sljedeći korak biće uvod⁻enje kriterijuma za selekciju odbiraka. Ovaj metod je moguće koristiti i kada je veći broj odbiraka zahvaćen šumom, ali ipak postoje odbirci koji su bez šuma. Cili je upotrebom kriterijuma probrati odbirke za koje smatramo da su zahvaćeni šumom. Predloženi kriterijum radi na principu gradijenta mjere koncentracije, što je jedan vid primjene dijela gradijentnog algoritma. Nakon uklanjanja svih odbiraka koji su zahvaćeni šumom, može se izvršiti rekonstrukcija na osnovu ostalih odbiraka. Za rekonstrukciju je korišćen GA, med⁻utim, treba istaći da se rekonstrukcija može izvršiti i nekim drugim algoritmom. Takod~e, predloženi kriterijum se može efikasno koristiti i sa L-statistikom, gdje bi se u jednom prolazu uklonio veliki dio najjače oštećenih odbiraka, dok bi se preostali odbirci zahvaćeni šumom, a koji se ne mogu detektovati robustnim metodama, pretražili u iterativnoj proceduri koristeći predloženi kriterijum. 4.3.1 Direktna pretraga Da bismo uspješno uklonili šum koji se nalazi u malom broju odbiraka signala, moramo pronaći dovoljno veliki skup odbiraka koji nijesu zahvaćeni šumom, i na osnovu njih rekonstruisati vrijednosti ostalih odbiraka, a med⁻u kojima su i svi oni koji su zahvaćeni šumom. Na ovaj način će odbirci sa šumom biti rekonstruisani na svoje stvarne vrijednosti. Jedan od načina da pronad⁻emo skup u kome nema oštećenih odbiraka (ili da pronad⁻emo dovoljno mali skup u kome su svi oštećeni odbirci) jeste i direktna/slučajna pretraga. Pretpostavimo da imamo signal dužine N i da je I odbiraka signala zahvaćeno šumom, gdje je I < N. Izračunajmo vjerovatnoću da će med⁻u NA slučajno selektovanih odbiraka svi biti bez šuma. Vjerovatnoća da prvi selektovani odbirak nije zahvaćen šumom je (N - I)/N , imajući u vidu da je N ukupan broj odbiraka, a N - I njih su bez šuma. Dalje, vjerovatnoća da prvi i drugi selektovani odbirak nijesu zahvaćeni šumom je NN-I NN--I-11 . U opštem slučaju, vjerovatnoća da nijedan od NA slučajno odabranih odbiraka nije zahvaćen šumom je P(NA) = ∏i=0 N - i NA-1 N - I - i . (4.1) Imajući u vidu da je NN--I-ii < 1, to vjerovatnoća P(NA) opada sa porastom broja članova u proizvodu. Zbog toga, pri ovom načinu rekonstrukcije, vrlo je bitno pronaći što je moguće manji broj odbiraka NA od kojih ni jedan nije zahvaćen šumom. Sa druge strane, imajući u vidu uslove rekonstrukcije definisane u teoriju CS preko RIP, indeksa koherencije i dr. [2, 3, 80], znamo da je za uspješnu rekonstrukciju poželjno imati što veću vrijednost NA, odnosno što veći broj dostupnih odbiraka. Treba imati na umu da su uslovi rekonstrukcije opšteg karaktera, i da ih je skoro nemoguće provjeriti u opštem slučaju. Statistička provjera mogućnosti rekonstrukcije je data u poglavlju 2.4.1. Primjer 4.2. Posmatrajmo signal $x(n) + \varepsilon(n)$ zahvaćen impulsnim šumom ε(n), pri čemu je šum prisutan u 16 od ukupno 128 odbiraka signala, slika 4.5 a). Koristeći NA = 32 i (4.1), dolazimo do vjerovatnoće 0.0071 da naš slučajno odabrani skup od 32 odbirka ne sadrži ni jedan odbirak zahvaćen šumom. Sračunata vjerovatnoća govori da u 1000 realizacija možemo očekivati oko 7 njih u kojima je selektovani skup odbiraka bez šuma. Realizacije su rad⁻ene sa impulsnim šumom ε

 $(n) = \epsilon 1(n)/\epsilon 2(n) + \epsilon 3(n)/\epsilon 4(n) + 12\epsilon 5$ (n), gdje su ϵi (n),

i = 1, 2, 3, 4, 5 Gausovi šumovi varijanse 1. Za mjeru koncentracije je korišćena relacija N −1 µ {X (k)} = 5 k=0 1 1/4 N X (k) (4.2) koja je bliska I0-normi. Ista je za svaku od 10010 realizalcija prikazana na grafiku d). Mjera koncentracije je korišćena kao detektor uspješne selekcije odbiraka, imajući u vidu da malim vrijednostima mjere odgovaraju velike SRR vrijednosti, grafik b). Skup odbiraka koji je proizveo minimalnu mjeru koncentracije je odabran i na osnovu njega je izvršena rekonstrukcija 10 0 -10 -20 x(n) + o(n) a) 20 5 0 -5 -10 x(n), xR (n) c) 10 0 50 100 0 50 n 100 120 SRR [dB] 100 80 60 40 20 0 -20 b) 0 200 400 600 800 1000 log(µ{X (k)}) 2 1.5 1 0.5 0 d) 0 200 400 600 800 1000 indeks realizacije Slika 4.5: Rekonstrukcija signala kome je 16 od ukupno 128 odbiraka zahvaćeno šumom. Rekonstrukcija je izvršena 1000 puta. Na grafiku pod a) je prikazan zašumljeni signal. Na graficima b) i d) su prikazani mjere koncentracije i SRR nakon rekonstrukcije, respektivno, za svaku od realizacija. Na grafiku c) su prikazani rekonstruisani (plava boja) i originalni (crvena boja) signal za realizaciju koja je proizvela minimalnu mjeru koncentracije. Prikazana je mjera (4.2). ostalih odbiraka. Originalni i rekonstruisani signal su prikazani na grafiku c). 4.3.2 L-statistika i direktna pretraga Prethodno opisana direktna pretraga može se koristiti u kombinaciji sa L-statistikom [75, 76]. Pretpostavimo da je I odbiraka signala zahvaćeno impulsnim šumom. Pretpostavićemo takod⁻e da je P impulsa visokog intenziteta (mogu se detektovati L-statistikom), dok su ostalih I – P impulsa zahvaćeni umjerenim šumom. U ovom slučaju P odbiraka koji su zahvaćeni impulsima visokog intenziteta možemo ukloniti L-statistikom, dok preostalih I – P zašumljenih odbiraka možemo pronaći direktnom pretragom, pretražujući preostalih N – P odbiraka. Vjerovatnoća da ćemo pronaći NA odbiraka koji nijesu zahvaćeni šumom, nakon što primijenimo L-statistiku i direktnu pretragu će biti P(NA) = 🗌 NA

-1N -P- (I-P)-i NA-1 N-I -i i= 0 N -P- i=∏i= 0 N -P- i

. (4.3) Uočavamo da je vjerovatnoća veća u odnosu na relaciju (4.1) gdje je korišćena samo direktna pretraga. Prethodna relacija je izvedena za slučaj da su svih P odbiraka koji su uklonjeni L-statistikom zaista bili zahvaćeni šumom. Takva pretpostavka itekako ima smisla kada su x (n) + o(n) 50 0 -50 -100 a) 0 50 100 10 x(n), xR (n) 5 0 -5 -10 c) 0 50 n 100 120 100 80 60 40 20 0 -20 SRR [dB] b) 2 1.5 1 0.5 0 d) 0 200 400 600 log(µ{X (k)}) 800 1000 0 200 400 600 indeks realizacije 800 1000 Slika 4.6: Rekonstrukcija signala kod koga je 64 od ukupno 128 odbiraka zahvaćeno impulsnim šumom. Signal zahvaćen šumom je prikazan na grafiku a). L-statistikom je uklonjeno 58 odbiraka, a ostatak do ukupno 96 uklonjenih odbiraka je uklonjen direktnom/slučajnom pretragom. Signal je rekonstruisan na osnovu preostalih 32 odbirka. Odrad-eno je 1000 nezavisnih realizacija. Mjere koncentracije i SRR za svaku od realizacija su prikazane na graficima b) i d), respektivno. Na grafiku c) su prikazani rekonstruisani (plava boja) i originalni (crvena boja) signal za realizaciju koja je proizvela minimalnu mjeru koncentracije. Prikazana je mjera (4.2). odred⁻eni odbirci zahvaćeni impulsima čija je amplituda mnogo veća od očekivane amplitude signala. Primjer 4.3. Pretpostavimo da su N /2 = 64 odbirka signala x(n) = 3 sin(40π n/N) + 4 cos(70π n/N + π /3) + 0.7 sin(100π n/N) (4.4) zahvaćena impulsnim šumom. Na signal je primijenjena L-statistika i uklonjeno je 90% odbiraka zahvaćenih šumom. Pod pretpostavkom da su svi uklonjeni odbirci zaista bili zašumljeni, možemo očekivati da je u preostalim odbircima i dalje prisutno oko 6 zašumljenih odbiraka (10% od ukupno 64 zašumljena odbirka). Koristeći M = 32 i (4.3) dolazimo do očekivanja da će 21 od ukupno 1000 realizacija biti uspješne. Posmatrajući sliku 4.6 vidimo da se teorijsko izvod⁻enje poklapa sa eksperimentalnim rezultatima. Uspješne realizacije se mogu lako

detektovati posmatrajući mjeru prikazanu na grafiku d). Impulsni šum, prisutan u I = N/2 = 64 odbiraka je realizovan kao σε = 120. Vrijednost σε je odabrana tako da vjerovatnoća da su vrijednosti šuma u opsegu amplituda signala |A| < 7.7 iznosi oko 10%, imajući u vidu da je erf(2A/120/ 2) = 0.1021. √ Imajući u vidu da je za uspješnu rekonstrukciju potrebna samo jeda uspješna realizacija, računska efikasnost se može unaprijediti postavljajući prag za mjeru koncentracije, koji bi prekinuo dalje realizacije kada smo sigurni da je uspješna rekonstrukcija izvršena. U konkretnom primjeru prag μ {X(k)} < 10 (ili log(μ{X(k)}) < 1, koji odgovara rijetkosti od oko K < 10 bi mogao obustaviti dalje realizacije. 4.3.3 Procedura i kriterijum za selekciju oštećenih odbiraka Vidjeli smo da se upotrebom L-statistike mogu značajno proširiti mogućnosti primjene direktne metode. Ipak, treba imati na umu da se za upotrebu L-statistike mora znati amplituda signala. Takod⁻e, ukoliko je šum u rangu amplitude signala, upotrebnom L-statistike će doći i do eliminacije najvećih odbiraka signala koji nijesu zahvaćeni šumom, što za posljedicu može imati rekonstrukciju sa biasom. Takod⁻e, može se desiti da su najmanji odbirci signala zahvaćeni šumom pozitivnih vrijednost čiji je intenzitet jednak razlici maksimalne i minimalne amplitude. U tom slučaju imamo šum od -6 dB, a zašumljeni odbirci su i dalje u nivou signala. U ovoj sekciji će biti predstavljen kriterijum koji ima za cilj da odabere odbirke signala za koje je vjerovatnoća da su zahvaćeni šumom najveća. Prednost predloženog kriterijuma u odnosu na direktnu metodu i L-statistiku je što se intenzitet šuma može imati proizvoljne vrijednost, tj. ne mora biti veći od nivoa signala. Osnovna ideja Minimum mjere koncentracije (ℓ1 norme) odgovara slučaju kada svi odbirci signala koji su zahvaćeni šumom imaju vrijednosti jednake stvarnim vrijednostima signala. Ukoliko tačnu vrijednost signala u trenutku n1 pomjerimo za vrijednost ∆ u oba smjera (x(n1)+∆ i x(n1)−∆) i sračunamo mjere koncentracije u ova dva slučaja, njihova razlika će biti 0. Ukoliko je vrijednost signala u istom trenutku n1 zahvaćena impulsnim šumom velikog intenziteta ε(n1), i ukoliko ponovimo proceduru i sračunamo mjere koncentracije za x(n1)+ɛ(n1)+∆ i x(n1)+ɛ(n1)-∆, vidjećemo da je razlika mjera velika, slika 4.7. Jednostavna analiza za slučaj jednog nedostajućeg odbirka je data u sekciji 2.3. Pokazano je da za j ε(n1)| < Δ važi g(n1) ≈ |x(n1) + Δ| − |x(n2) − Δ| 2Δ , (4.5) odnosno g(n1) ≈ x(n1) Δ ~ x(n1). Prethodna relacija znači da vrijednost gradijenta, za veliko ∆, može biti korišćena kao indikator odstupanja zašumljenog odbirka od stvarne vrijednosti, tj. kao mjera intenziteta šuma u posmatranom odbirku. Iako prethodna relacija i pravilo ne važe striktno za slučaj velikog broja oštećenih odbiraka, med⁻utim i u tom slučaju veliki broj odbiraka prati prethodno pravilo, što će u nastavku biti pokazano kroz primjene i statistički potvrd⁻eno. 20 15 15 10 10 x(n2) 5 0 -5 x(n2) 5 0 -5 -10 -10 -15 -15 -20 -20 -10 x(n1) 0 10 20 a) -20 -20 -10 x(n1) 0 10 20 b) Slika 4.7: Mjera kao funkcija vrijednosti dva odbirka. Mjera za slučaj tačnih vrijednosti odbiraka je prikazana crnim konturnim linijama (presjek ljubičastih linija). Crnim krstićem je označena mjera za slučaj zašumljenih odbiraka. Dužine crvenih linija su proporcionalne intenzitetu šuma, dok je razlika mjera prikazana zelenom linijom. Slučaj kada je jedan odbirak zašumljen je prikazan na grafiku a), dok je slučaj kada su oba odbirka zašumljena prikazan pod b). Ideja kriterijuma biće slikovito predstavljena za slučaj dva zašumljena odbirka x(n1)+ ε(n1)ix(n2)+ε(n2),slika4.7.Vrijednostodbirkax(n1)jepredstavljenanahorizontalnojosi, dokjevrijednostodbirkax(n2)predstavljenanavertikalnojosi.Crvenombojomjeprikazano odstupanje odbiraka od njihovih stvarnih vrijednosti, ti, intenzitet šuma u njima. Kružićem koji odgovara crnim konturnim linijama, a koji se nalazi na presjeku ljubičastih linija, se nalaziminimummjerekoncentracijezaslučajtačnihvrijednostidvaposmatranaodbirka(bez šuma).Crnimkrstićemjeoznačenavrijednostmjerekadasuodbircix(n1)ix(n2)zašumljeni, tj. za slučaj kada imaju vrijednosti $x(n1)+\varepsilon(n1)$ i $x(n2)+\varepsilon(n2)$. Na grafiku a) je prikazan

pojednostavljenislučajkadajec(n1)=0,odnosnokadanemašumauodbirkux(n1),dokjena

grafikub)prikazanslučajkadasuobaodbirkazahvaćenašumom,pričemuje|ɛ(n1)|<|ɛ(n2)|.

Mjeresusračunatezax(n1)+ ϵ (n1)+ Δ ix(n1)+ ϵ (n1)- Δ ,anakontogaizax(n2)+ ϵ (n2)+ Δ

 $ix(n2)+\epsilon(n2)-\Delta$. Vrijednostisračunatihmjerasuprikazane plavimkružićima. Razlikemjera,

zasvakioddvaparasračunatihmjera, suprikazane podebljanim zelenimlini jama. Vidimoda

susračunaterazlikemjeraproporcionalneodstupanjimae(n1)ie(n2)(podebljanecrvenelinije) vrijednosti signala od stvarnih

vrijednosti. Tačnije, većim vrijednostima šuma (duže crvene

linije) odgovaraju većevrijed nostirazlikam jera (duže zelenelinije). To jerazlog zašto sem jere

koncentracijemogukoristitizadetekcijuodbirakasignalakojisuzahvaćenišumom. Imajući u vidu prethodno prikazane formule koje važe za slučaj jednog nedostajućeg

odbirka,kaoiilustracijuzaslučajdvanedostajućaodbirkakojatakod[−]epratizaključkeizvedene za slučaj jednog nedostajućeg odbirka, uočene zakonitosti će se koristiti i za veliki broj nedostajućihodbiraka. Algorithm 8 Odabir odbiraka Require: • Signal x(n) • Parametar Δ • Broj odbiraka koji se uklanjaju NM 1: for m ← 0 . . . N − 1 do 2: Y1(k) ← DFT{x(n) + Δδ (n − m)} 3: Y2

(k) ← DFT{x(n) - Δδ (n - m)} 4: g(m) ← 1 N-1 N ∑ |Y1 (k)| - |Y2 (k)| 5: end for k=0

6: Sortiramo |g(m)| u nerastući redosljed |g(m1)| ≤ |g(m2)| ≤ … ≤ |g(mN)| Output: • Pozicije selektovanih odbiraka m1, m2, …, mM. Procedura odabira zašumljenih odbiraka: Korak 1: Posmatrajmo zašumljeni signal x(n). Za svaki odbirak signala na pozicijama m = 1, .., N formirajmo signale y1m(n) and y2m(n) kao y1m(n) = x(n) + $\Delta\delta$ (n - m) y2(n) = x(n) - $\Delta\delta$ (n - m). Za ovako formirane signale sračunamo razlike mjera koncentracije kao N-1 N-1 g(m) = $\sum |Y1m(k)| - \sum |Y2m(k)|$, k=0 k=0 gdje je Yim(k) = DFT[yik(n)], za i = 1,2. Korak 2: Eliminišemo odbirke signala kojima odgovaraju najveće vrijednosti |g(m)| Q(m) = arg {sort {|g(m)|}} , (4.6) (4.7) gdje je sa sort označena funkcija koja sortira vrijednosti od najveće ka najmanjoj. U prethodnoj relaciji sa Q(0) će biti označen odbirak koji je najvjerovatnije zahvaćen sa najvećom količinom šuma. Generalno, odbirci na pozicijama m koji proizvode najveću razliku u mjerama koncentracije su eliminisani, tj. ne koriste se u rekonstrukciji, već bivaju rekonstruisani. Pseudo-kod predložene procedure ja dat u algoritmu 8. Primjer 4.4. Posmatrajmo N = 128 odbiraka signala (4.4) od kojih su 64 (50%) zahvaćeni šum 80 60 40 20 0 20 40 60 80 100 120 zašumljeni signal 80 60 40 20 0 20 40 60 80 100 120 Slika 4.8: Šum sortiran predloženim kriterijumom (lijevo) i zašumljeni signal sortiran istim kriterijumom (desno). 10 0 -10 -20 x(n) + o(n) a) 20 5 0 -5 -10 x(n), xR (n) c) 10 0 50 100 0 50 n 100 120 100 80 60 40 20 0 -20 SRR [dB] b) 0 200 400 600 800 1000 2 1.5 1 0.5 0 log(µ{X (k)}) d) 0 200 400 600 indeks realizacije 800 1000 Slika 4.9: Rekonstrukcija signala kome je 96 od ukupno 128 odbiraka uklonjeno, od čega 64 predloženim kriterijumom, a 32 nasumičnom/direktnom pretragom. Rekonstrukcija je izvršena 1000 puta, pri čemu svakom rekonstrukciji odgovara drugi set od 32 nasumično odabrana odbirka. a) Zašumljeni signal kome su 64 odbirka zahvaćena šumom; b) SRR za svaku od rekonstrukcija; c) Originalni (plava boja) i rekonstruisani (crvena boja) signal, pri čemu je prikazana realizacija sa najmanjom mjerom koncentracije; d) Miera koncentracije za svaku od 1000 realizacija. Prikazana je mjera (4.2). impulsnim šumom 42ε (n), gdje je ε (n) Gausov šum varijanse 1. Imajući u vidu da je amplituda šuma u ovom slučaju u nivou amplituda signala, jasno je da robustne tehnike kao što je L-statistika, ne mogu uspješno ukloniti šum. Prag koji bi eliminisao šum izvan amplituda signala 2A = 15.4 bi ipak ostavio veliki broj zašumljenih odbiraka unutar signala što bi zahtijevalo ogroman broj realizacija u

16/02/2021

Similarity Report

postupku direktne pretrage. Prethodno opisana procedura za selekciju odbiraka će se pokazati kao efikasna i u ovom slučaju. Na osnovu opisanog kriterijuma, biće uklonjena 64 odbirka za koja se pokazalo da su proizvela najveću razliku u mjerama koncentracije. Preostalih 32 odbirka koji se uklanjaju će biti odred⁻eni u direktnoj/nasumičnoj pretrazi. Za slučaj da je kriterijum primijenjen samo na šumu, isti će izvršiti klasično sortiranje odbiraka po vrijednosti. Ipak, za slučaj zašumljenog signala, par zašumljenih odbiraka će ipak ostati van skupa od 64 odbirka koji su selektovani na bazi kriterijuma. Na sreću, broj ovih odbiraka je mali, pa ih je nasumičnim odabirom još 32 odbirka moguće detektovati. Rekonstrukcija će biti izvršena na osnovu preostala 32 = 128-64-32 odbirka. Rezultati za 1000 realizacija (svaka realizacija odgovara novom nasumičnom skupu od 32 odbirka) je prikazana na slici 4.9. Vidimo da je med⁻u 1000 izvršenih realizacija, veliki broj uspješnih, a koje odgovaraju niskim vrijednostima mjere koncentracije (4.2). Postavljanjem praga μ {X(k)} < 10 (oko K < 10 kompleksnih komponenti signala), mogli bismo očekivati uspješnu rekonstrukciju u svega nekoliko realizacija. Treba obratiti pažnju da mjera koncentracije prikazana na grafiku d) odgovara relaciji (4.2), i da je ista korišćena samo za prikaz mjere na graficima i potencijalnu detekciju uspješne realizacije. Prilikom rekonstrukcije signala, korišćena je ₹1-norma. 4.3.4 Iterativna procedura za preostali šum Vidjeli smo da do uspješne rekonstrukcije možemo doći kombinujući predloženu proceduru sa direktnom pretragom. Direktna pretraga je imala za cilj da pronad⁻e mali broj odbiraka signala koji nijesu mogli biti detektovani predloženom procedurom. Ipak, za iole veći broj odbiraka koje treba pronaći direktnom pretragom bi bio potreban veliki broj realizacija kako bi u nekoj od njoj uspjeli da obuhvatimo sve zašumljene odbirke. Kako bi se prevazišao prethodni problem uvešćemo iterativnu proceduru za pronalaženje preostalih zašumljenih odbiraka. Predložena procedura je iterativna nadogradnja prethodno opisane procedure. Iterativna procedura: Korak 1: Primjenom kriterijuma odredimo skup pozicija NM odbiraka koji će biti uklonjeni, a od kojih je većina zahvaćena šumom velikog intenziteta. Skup pozicija preostalih odbiraka NA je komplement skupa NM. Korak 2: Za svaki odbirak u NA izvršimo rekonstrukciju smatrajući da je i taj posmatrani odbirak takod⁻e nedostupan zajedno sa prethodno odred⁻enim odbircima iz skupa NM. Sračunamo mjeru koncentracije ovako rekonstruisanog signala. Razlog za ovu proceduru se ogleda u činjenici da će rekonstrukcija jako oštećenih odbiraka značajno poboljšati mjeru koncentracije rekonstruisanih signala (nakon što je i taj odbirak rekonstruisan). Odbirci koji nijesu zahvaćeni šumom ili su malo oštećeni neće značajnije doprinijeti poboljšanju mjere koncentracije. Korak 3: Izaberemo nekoliko r = 1,2,3, ili 4 odbiraka iz skupa NA, nakon čije rekonstrukcije u koraku 2 je došlo do najvećeg poboljšanja u mjeri koncentracije rekonstruisanog signala. Ovako Algorithm 9 Iterativna procedura Reguire: • Zašumljeni signal xε (n) = x(n) + ε (n), n = 0, 1, . . . , N – 1 • Broj odbiraka r koji se uklanjaju u svakoj iteraciji • Gradijentni algoritam G R A D R E C definisan u algoritmu 1 1: Primijenimo proceduru opisanu algoritmom 8 da bi formirali skupove NM i njegov kompliment NA 2: repeat 3: $y(n) \leftarrow GRADREC(x\varepsilon(n),Nx) 4: xR(n) \leftarrow y(n) 5: Y(k) \leftarrow DFT\{y(n)\}$

6: for m ∈ Nxc do 7: y1 (n) ← GRADREC(y (n),{m}) 8: Y1 (k) ← DFT{ y1 (n)}

N-1 N-1 9: g(m) ← $\sum |Y(k)| - \sum |Y1(k)| k=0 k=0$ 10: end for 11: Izaberemo r odbiraka kojima odgovaraju najveće vrijednosti |g(m)| 12: Pozicije izabranih odbiraka uklonimo iz skupa NA i dodamo ih u skup NM. 13: until dok nije zadovoljen kriterijum za zaustavljanje 14: return y(n) Output: • Rekonstruisani signal xR(n). izabranih r odbiraka će biti uklonjeno, tj. skup pozicija NM će biti proširen sa pozicijama ovih odbiraka. Korak 4: Ukoliko rekonstrukcija nije izvršena, vratimo se na korake 2 i 3 sa

ažuriranim skupovima setom NA i NM. Za r = 1, samo jedan odbirak koji je prouzrokovao maksimalno poboljšanje u mjeri koncentracije biva uklonjen. Da bi se procedura ubrzala, u svakom koraku je r = 2 ili r = 3 odbiraka premješteno iz skupa NA u skup NM, imajuću u vidu da procedura uspješno detektuje nekoliko najviše oštećenih odbiraka, a ne samo jedan. Na kraju Nit iteracija, ukupno rNit odbiraka u kojima je potencijalno šum biva uklonjeno. Predložena procedura je u vidu pseudo-koda data u algoritmu 9. Primjer 4.5. Posmatrajmo N = 128 odbiraka signala definisanog sa S x(n) = \sum Ai cos(2π kin/N + φ i). (4.8) i=1 Rijetkost posmatranog signala je K = 2S. Amplitude frekvencije i faze su odabrane slučajno iz opsega 1 ≤ Ai ≤ 2, 1 ≤ ki ≤ 63 i 0 ≤ φ i ≤ 2π . Smatraćemo da su 64 odbirka ovog 30 odbirci šuma K = 6 30 odbirci šuma K = 10 20 2A 20 2A 10 10 0 0 20 40 60 80 100 120 20 40 60 80 100 120 Slika 4.10: Šum u odbircima signala prikazan redosljedom kojim su birani odbirci. Amplituda šuma je u nivou amplituda signala 2A. Slučajevi za rijetkosti K = 6 lijevo i K = 10 desno. signala zahvaćena šumom

$\epsilon(n) = 40(\epsilon_1 (n) - 0.5) + 40(\epsilon_2 (n) - 0.5),$

gdje su ε1(n) i ε2(n) bijeli uniformni šumovi. Ovako formirani šum ima veliki broj vrijednost koje su po intenzitetu u rangu signala. Korišćena je iterativna procedura, gdje je u svakoj iteraciji r = 4 odbiraka premješteno is skupa NA u skup NM. Na ovaj način bi, u idealnom slučaju, kroz 16 iteracija svih 64 = 16×4 odbiraka zahvaćenih šumom bilo detektovano. Naravno, treba imati na umu da se u iterativnoj proceduri može desiti da neki odbirak koji nije zahvaćen šumom bude detektovan kao kandidat za premještanje iz skupa NA u skup NM, pa stoga ukupan broj odbiraka rNit koje želimo u iterativnoj proceduri da prebacimo u skup NM mora često biti veći od broja odbiraka koji su stvarno zahvaćeni šumom. Na slici 4.10 su prikazane vrijednosti šuma onim redosljedom kojim su dodavani odbirci u skup NM. Vidimo da algoritam dobro prati intenzitet šuma u odbircima. Rezultati rekonstrukcije su prikazani na slici 4.11. SRR i mjera koncentracije kao funkcije broja uklonjenih odbiraka za rijetkost K = 6 su prikazani na graficima a) i c), dok su iste funkcije za slučaj rijetkosti K = 10 prikazane na graficima b) i d). Vidimo da je u oba slučaja nakon približno 68 uklonjenih odbiraka dolazilo do naglog skoka u SRR, što znači da je kriterijum napravio svega nekoliko grešaka uklonivši odbirke koji nijesu bili zahvaćeni šumom. 4.4 Gradijentni algoritam i šum u svim odbircima Kriterijum i iterativna procedura, koji su korišćeni u prethodnim sekcijama će biti primijenjeni na signale kojima su svi odbirci zahvaćeni šumom. Pokazaće se da predložene metode dovode do smanjenja šuma i u slučajevima kada su svi odbirci signala zahvaćeni šumom. Odred⁻ena poboljšanja će se dobiti i za slučaj Gausovog šuma [58]. Primjer 4.6. Posmatrajmo N = 128 odbiraka signala definisanog sa (4.8) zahvaćene impulsnim šumom 1.5ε3(n), gdje je ε(n) Gausov šum σε = 1, pri čemu su korišćene rijetkosti K = 6 (S = 3) i K = 10 (S = 5). Korišćena je iterativna procedura, gdje je u svakoj iteraciji r = 4 100 SRR [dB] K = 6 50 0 -50 a) 0 16 32 48 64 80 µ{X(k)} K = 6 100 50 0 c) 0 16 32 48 64 80 broj uklonjenih odbiraka 100 SRR [dB] K = 10 50 0 -50 b) 0 16 32 48 64 80 μ{X(k)} K = 10 100 50 0 d) 0 16 32 48 64 80 broj uklonjenih odbiraka Slika 4.11: Rekonstrukcija rijetkog signala zahvaćenog šumom, pri čemu su odbirci za rekonstrukciju birani na osnovu iterativne procedure. U svakoj iteraciji, r = 4 odbirka su uklonjena. SRR kao funkcije broja uklonjenih odbiraka za rijetkosti K = 6 i K = 10 su prikazane na graficima a) i b), respektivno. Mjere koncentracije kao funkcije broja uklonjenih odbiraka za rijetkosti K = 6 i K = 10 su prikazane na graficima c) i d), respektivno. Prikazana je mjera (4.2). odbiraka premješteno is skupa NA u skup NM. Većina odbiraka koji su zahvaćeni šumom velikog intenziteta je uklonjena,

što je doprinijelo poboljšanju SRR slika.4.12 a) i b). Finalna rekonstrukcije je dovela do poboljšanja SRR od oko 20 dB, u oba slučaja. Iako sa povećanjem broja odbiraka koji uklanjamo dolazi do povećanja SRR, za slučaj kada očekujemo da šum postoji u svim preostalim odbircima, treba izbjegavati da se rekonstrukcija vrši sa brojem odbiraka bliskim teorijskim granicama, jer u tom slučaju šum se značajno povećava jer rekonstrukcija postaje nemoguća. Iterativna procedura je ponovljena za signal (4.8) sa različitim vrijednostima parametara kroz 100 realizacija za svaku od rijetkosti K = [6,12,16,22,30]. Prikazana je srednja vrijednost (za 100 realizacija). Rezultati su prikazani u tabeli 4.1: K - rijetkost signala; SNRi - odnos signal eksterni šum; NM - broj uklonjenih odbiraka; CQ - koeficijent efikasnosti procedure za eliminaciju odbiraka; SNR - Izlazni SNR za slučaj kada rijetkost signala nije poznata; SNRs - Izlazni SNR za slučaj kada je rijetkost signala poznata; SNRT - Na bazi teorije očekivani SNR za slučaj kada je rijetkost signala poznata. Iterativna procedura je prekinuta u slučajevima kada je SNR krenuo da opada. Teorijska izvod⁻enja koja prate rezultate prikazane u tabeli su data u sljedećoj sekciji. Tabela 4.1: Statistički i teorijski rezultati SNR za različite rijetkosti. Rezultati su usrednjeni kroz 100 realizacija. Rijetkost K 6 12 16 22 30 SN Ri -4.4574 -4.4798 -4.4825 -4.3603 -4.5782 NM 62 75 84 97 105 CQ 0.0017 0.0162 0.0381 0.0663 0.0854 SN R 26.5483 17.0816 12.9914 10.0324 7.5814 SN Rs 33.6382 23.6797 18.2484 15.6012 12.2228 SN RT 32.9233 21.5892 17.3259 13.9669 11.5217 30 15 SRR [dB] SRR [dB] 20 K = 6 10 K = 10 10 5 0 0 -10 0 16 32 48 64 a) -5 0 16 32 48 64 b) 100 μ{X(k)} K = 6 100 μ{X(k)} K = 10 50 50 0 c) 0 d) 0 16 32 48 64 0 16 32 48 64 broj uklonjenih odbiraka broj uklonjenih odbiraka Slika 4.12: Rekonstrukcija odbiraka čiji su svi odbirci zahvaćeni šumom. U svakoj iteraciji je uklonjeno r = 4 odbiraka. SRR kao funkcije broja uklonjenih odbiraka za rijetkosti K = 6 i K = 10 su prikazane na graficima a) i b), respektivno. Miere koncentracije kao funkcije broja uklonjenih odbiraka za rijetkosti K = 6 i K = 10 su prikazane na graficima c) i d), respektivno. Prikazana je mjera (4.2). 4.4.1 Analiza uticaja šuma Posmatrajmo signal K x(n) = Σ Aiψi(n), (4.9) i=1 gdje je $\psi k(n) = \exp(i2\pi nk/N)$, i uvedimo relaciju za odnos signala i eksternog šuma za slučaj zašumljenog signala x(n)+ε(n): SNRi = 10log ΣΣnNNn==--0011||εx((nn))||22 Ex = 10 log E . ε Pretpostavimo da smo koristeći L-statistiku, direktnu pretragu, prethodno opisane procedure ili neku kombinaciju pomenutih metoda, pronašli NA odbiraka koje ćemo koristiti u rekonstrukciji kao dostupne, odnosno na osnovu kojih ćemo rekonstruisati preostalih NM = N – NA odbiraka. Rekonstrukcija će se, dakle obaviti na osnovu y(ni) = x(ni)+ε(ni) (4.10) i = 1, 2, ..., NA. kao i u klasičnoj formulaciji koja važi u CS kada je samo NA odbiraka dostupno. Pod pretpostavkom da signal sadrži NA odbiraka koji nijesu zahvaćeni šumom, gdje je NA najmanji mogući broj koji garantuje uspješnu rekonstrukciju, tada se, u teoriji, rekonstrukcija može izvršiti do kompjuterske preciznosti. U tom slučaju odnos signal šum teži beskonačnosti SRR → ∞. Jedini problem predstavlja pronaći skup odbiraka koji ne sadrži šum. U slučaju kada ne možemo obezbijediti najmanje NA odbiraka bez šuma, ima smisla govoriti o uticaju preostalog šuma na grešku rekonstrukcije. Pretpostavimo da u preostalih NA odbiraka koje koristimo za rekonstrukciju, energije šuma iznosi NA ΕεΑ = Σ |ε(ni)|2 . (4.11) ni=1 Za početak, posmatrajmo najjednostavniji slučaj kada je rekonstrukcija izvršena u transformacionom domenu na osnovu NA dostupnih odbiraka na pozicijama ni NA XR(k) = 5 y(ni)ψn∗i(k). (4.12) i=1 Izostavljanje nedostajućih odbiraka iz sume se poklapa sa slučajem kada su njihove vrijednosti 0. Ove vrijednost bi se dobile kada bi se u procesu rekonstrukcije umjesto ℓ 1-norme, koristila ℓ 2-norma $\Sigma Nk=-01|X(k)|2$ [49, 76, 79]. Dale, dostupni odbirci signala, y(ni), i = 1,2,...,NA na frekvencijama koje odgovaraju komponentama signala se sumiraju u fazi. Rezultat ove sume je vrijednost AiNA na frekvenciji i-te komponente signala, gdje Ai predstavlja amplitudu i-te komponente signala u vremenskom domenu signala (4.12). Treba imati na umu da je energija šuma jednaka i u vremenskom i u transformacionom domenu, u skladu sa Parsevalovom teoremom. Stvarna vrijednost amplitude u

16/02/2021

Similarity Report

transformacionom domenu na frekvenciji ki, a za slučaj da su svi odbirci korišćeni bi bila NAi. Da bismo gore pomenutu vrijednost AiNA dobijenu upotrebom svega NA (NA < N) odbiraka sveli na tačnu vrijednost, potrebno je da uvedemo korektivni koeficijent N/NA. Ista procedura i korekcija se izvodi u svakom od CS rekonstrukcionih algoritama koji rekonstrukciju vrše na ovaj način. Množeći rekonstruisane vrijednosti signala sa koeficijentom N/NA, doći će i do množenja šuma u tim komponentama sa istom vrijednošću. Energija šuma će na ovaj način biti povećana na ΕεΑΝ2/ΝΑ2. Odnos signal šum u rekonstruisanom signalu će biti SNR = 10log NNA22∑∑nN=Nn-iA0=11|x|(ɛn()n|i2)|2 (4.13) Ukoliko je raspodjela šuma ista u svim odbircima signala, tada je ΣNniA=1 |ε(ni)|2 = NAσε2, odnosno SNR = 10log ΣNnN=-201N|Ax(σnε2)|2 NA2 = 10 log - 10 log (NA) Ex N E ε = SN Ri - 10 log N . (NA) (4.14) (4.15) Vidimo da ovaj način rekonstrukcije, a koji koristi (4.12), pogoršavao odnos signal šum, jer je N > NA. Poboljšanje u direktnoj rekonstrukciji se može očekivati samo u slučaju kada je moguće detektovati odbirke koji su najviše zahvaćeni šumom i ukloniti ih, kako bi se rekonstrukcija vršila sa najmanje oštećenim odbircima. Ukoliko kriterijum za odabir najoštećenijih odbiraka, kao onaj predstavljen u prethodnim sekcijama, može obezbijediti da važi nejednakost N2 N A N-1 NA2 n Σ i=1| ϵ (ni)|2 < n Σ =0 | ϵ (n)|2, tada se može očekivati pobolišanje odnosa signal šum čak i upotrebom direktne formule (4.12). Direktna formula (4.12) se koristi sa pretpostavkom da je signal rijedak pri čemu je K < NA. Takod⁻e, pozicije nenultih koeficijenata u transformacionom domenu se takod~e mogu smatrati poznatim, ili se mogu procijeniti na osnovu (4.12) koristeći prag i iterativnu proceduru, što je i sastavni dio mnogih CS rekonstrukcionih algoritama. U idealnom slučaju, sve komponente sem K stvarnih komponenti signala se postavljaju na 0. Imajući ovo u vidu, energija greške rekonstrukcije će biti umanjena za faktor K/N. Energija šuma u signalu rekonstruisanom na ovaj način će biti EεR = KN NNA22 n∑Ni=A1|ε(ni)|2. Ukupni odnos signal šum u rekonstruisanom signalu sa K komponenti na poznatim (ili estimiranim) pozicijama je ∑Nn=−01|x(n)|2 SNR = 10log KNNA2 ΣNniA=1|ε(ni)|2 . (4.16) Upravo opisanu rekonstrukciju možemo podijeliti u dvije grupe: • Za slučaj ravnomjerno distribuiranog šuma kroz preostale odbirke (bez upotrebe kriterijuma za selekciju odbiraka), kada važi ∑NniA=1 |ε(ni)|2 = NAσε2, imamo da je SN R = 10 log ΣNn=-01 |x(n)|2 KNNA2 NA σε2 (4.17) = 10 log ΣNn=-01 |x(n)|2 NA σε2N K = SN Ri - 10 log K N . A U ovom slučaju poboljšanje zavisi od odnosa broja dostupnih odbiraka i broja komponenti signala čije pozicije znamo. • Ukoliko je korišćen kriterijum za salekciju odbiraka za koje se pretpostavlja da su najviše zahvaćeni šumom, tada je srednja energija (varijansa) u preostalim odbircima manja od srednje energije u svim odbircima N1N1A ∑ΣNnNni=A-=011 ||εε((nn)i)|2|2 = CQ, (4.18) gdje je 0 ≤ CQ ≤ 1 koeficijent uspješnosti kriterijuma. Za slučaj da ne koristimo kriterijum CQ = 1. U idealnom slučaju, kada nema šuma u preostalim odbircima (šum je postojao samo u odbircima koje smo uklonili) CQ = 0. Za koeficijent u opsegu 0 ≤ CQ ≤ 1, ukupno poboljšanje nakon rekonstrukcije se može izraziti kao SNR = 10log KNNA255Nn=Nn-i0A=1|1x|(en()n|i2)|2 =

10 log $\sum nN = -01 |x(n)|^2$ NA CQ $\sum nN = -01 |\varepsilon(n)|$

2 K = SN Ri – 10 log CQ K . (4.19) (NA) Ova relacija važi za slučaj da znamo K pozicija koeficijenata u transformacionom domenu. Ukoliko to nije slučaj, tada važi relacija SNR = 10log NNA22∑∑nN=Nn−iA0=11|x|(εn()n|i2)|2 = 10log NNA22 NNA∑CnNQ=-0∑1|Nnx=-(0n1)|ε|2(n)|2 = SN Ri – 10 log CQ N . (4.20) (NA) Poboljšanje u rekonstrukciji, za slučaj da ne znamo pozicije K koeficijenata u transformacionom domenu se može očekivati ukoliko je kriterijum za selekciju odbiraka

takav da je CQ < M/N. 4.4.2 Gausov šum u gradijentnom algoritmu Za slučaj da su svi odbirci signala zahvaćeni Gausovim šumom, najbolja opcija bi bila da se uklone odbirci koji su najviše zahvaćeni šumom, a da se ostave odbirci u kojima je vrijednost šuma najmanja. Za signal dužine N koji pokušavamo rekonstruisati na osnovu NA odbiraka, možemo naći interval u kojem se nalaze amplitude AL za NA najmanje oštećenih odbiraka. Vrijednost se dobija iz izraza 1 ALσε σε 2π -AJLσε $\sqrt{}$ e-ξ2/(2σε2)dξ = NA N (4.21) AL √ 1 e-ξ2/2dξ = erf √AL 2 = NA . 2π -∫AL () N Vrijednost AL se dobija iz inverzne erf(x) funkcije, koja se označava sa erfinv(x). Za zadati odnos NA/N, vrijednost amplitude je AL = 2erfinv(NNA). Na primjer, za odnos NA = N/2, $\sqrt{}$ dobijamo da će polovina odbiraka šuma koji imaju najmanje vrijednosti biti iz opsega [-0.6745 σ c, 0.6745σε], jer je AL = 2erfinv(0.5) = 0.6745. Varijansa ovog šuma, dobijenog √iz Gausovog šuma tako što je uklonjeno N/2 najvećih vrijednosti, je manja od varijanse samog Gausovog šuma, i iznosi √2erfinv(NNA)σε σL2 = NA σε 2π 1 √ξ 2e-ξ 2/(2σε2)dξ. (4.22) N – 2erfinv(NA)σε 🗸 🛛 N Količnik NA/N u prethodnoj relaciji potiče od normalizacije gustine vjerovatnoće (probability density function - pdf). Za novi šum koji je formiran od vrijednosti ispod odred enog praga, 0.8 1 σQ2 /σo2 0 -2 10 log10 σQ2/σ2ο 0.6 0.4 -4 -6 -8 0.2 -10 0 0 broj uklonjenih odbiraka 32 64 96 128 -12 0 broj uklonjenih odbiraka 32 64 96 128 Slika 4.13: Pobolišanje srednje energije šuma u rekonstruisanom signalu u odnosu na energiju šuma na ulazu za različite vrijednosti nedostajućih/uklonjenih odbiraka NM = N – NA. Slučaj kada je ulazni signal samo šum - zelena boja, dok je slučaj zašumljenog signal na ulazu prikazan plavom bojom. U oba slučaja je korišćen kriterijum za odabir odbiraka iz sekcije 4.3.3. Crvenom bojom je prikazan odnos šuma kome su uklonjeni odbirci sortiranjem i početnog šuma. kriterijum. Odnosi u dB su prikazani na desnom grafiku. integral njegove pdf je 1. Za slučaj NA/N = 1/2, varijansa novog šuma, koji se sastoji od 50% najnižih Gausovih vrijednosti, iznosi σL2 = 0.1426σε2. Pobolišanje u srednjoj energiji šuma nakon rekonstrukcije je prikazana na slici 4.13. Prikazani su usrednjeni rezultati za slučaj 100 nezavisnih realizacija za svaki broj uklonjenih odbiraka. Slučaj kada je na ulazu samo šum (bez signala) je prikazan zelenom bojom. Na šum na ulazu je prvo primijenjen kriterijum iz sekcije 4.3.3 i u skladu sa kriterijumom je uklonjen odred⁻eni broj odbiraka (broj uklonjenih odbiraka je prikazan na x osi na graficima). Na osnovu preostalih odbiraka su rekonstruisani ostali odbirci. Odnos srednjih energija početnog i rekonstruisanog signala (šuma) je prikazana na grafiku. Drugi slučaj prikazan plavom bojom je zašumljeni signal. Naime, na ulazu imamo signal zahvaćen Gausovim šumom. Kriterijum je primijenjen i uklonjen je odred⁻eni broj odbiraka, a nakon toga je izvršena rekonstrukcija. Odnos srednjih energija šuma u rekonstruisanom signalu i šuma u početnom signalu je prikazan na grafiku. Konačno, crvenom bojom je prikazan odnos srednje energije šuma u preostalim odbircima u odnosu na srednju energiju ukupnog šuma. U ovom slučaju je kao kriterijum za uklanjanje odbiraka korišćeno klasično sortiranje. Prikazane statističke vrijednosti se poklapaju i sa teorijskim. Na primjer, za slučaj M = N/2 imamo 10 log σσLε22 = 10 log(0.1426) = −8.46 dB, što se poklapa sa vrijednošću dobijenom statistički (crvena boja, grafik desno). Uočimo takod⁻e da za slučaj velikog broja uklonjenih odbiraka, energija u preostalim odbircima teži nuli, med⁻utim, ovaj region treba izbjegavati, jer za mali broj dostupnih odbiraka 0.35 zašumljeni signal 0.3 0.25 0.2 0.15 0.1 0.05 0 20 40 60 80 100 120 Slika 4.14: Gausov šum malog intenziteta u svim odbircima sortiran kriterijumom iz sekcije 4.3.3 - plava boja. Crvenom bojom je prikazana funkcija dobijena usrednjavanjem median filterom dužine 10. nije uopšte moguće izvršiti rekonstrukcije (teorijski). Imajući u vidu kako kriterijum i GA funkcionišu, čak i slučajni odabir malog do umjerenog broja odbiraka dovodi do smanjenja srednje energije šuma u rekonstruisanom signalu [49]. Za slučaj zašumljenog signala, kriterijum za selekciju odbiraka predstavljen u sekciji 4.3.3 se donekle razlikuje od klasičnog sortiranja samog šuma. Med⁻utim, kriterijum ipak generalno favorizuje vrijednosti zahvaćene jačim šumom 4.14. Plavom bojom su prikazane vrijednosti šuma u odbircima

koje je kriterijum izabrao, redom kojim su birani. Crvenom bojom je prikazana funkcija dobijena usrednjavanjem prikazanih vrijednosti median filterom dužine 10. Pobolišanje u slučaju zašumljenog signala je prikazano na slici 4.13, plavom bojom. Za NA = N/2 poboljšanje je 10 log σε2 = 10 log(0.31) = -5.1 [dB]. σQ2 Ova vrijednost je za svega oko 3 dB lošija od slučaja kada bi odbirci šuma bili idealno sortirani i kada bi bili uklonjeni samo odbirci sa najvećim vrijednostima (crvena linija). Zaključak Kompresivno odabiranje (CS) predstavlja značajnu naučnu oblast koja se intenzivno razvija posljednjih 15 godina. Istraživanja koja se sprovode u okviru ove oblasti mogu se grubo podijeliti u dvije kategorije. Jedna od njih je rekonstrukcija signala koji su rijetki u nekom transformacionom domenu na osnovu mjerenja koja predstavljaju linearne kombinacije koeficijenata iz domena rijetkosti. Kako su i sami odbirci signala u vremenskom domenu linearna kombinacija koeficijenata, to se njihov skup može smatrati setom mjerenja na osnovu kojeg je potrebno izvršiti rekonstrukciju ostalih odbiraka. Proces rekonstrukcije signala na osnovu skupa dostupnih odbiraka je glavna tema ove teze. U tezi su predstavljeni novi algoritmi za rekonstrukciju rijetkih signala. Algoritmi spadaju u grupu gradijentnih algoritama, koji rekonstrukciju vrše u vremenskom, odnosno domenu akvizicije, za razliku od većine drugih široko rasprostranjenih algoritama koji rekonstrukciju vrše u domenu rijetkosti. Originalnost predstavljenih metoda verifikovana je publikovanjem u renomiranim med-unarodnim časopisima u oblasti elektrotehnike [6, 39, 49, 58]. Izvršena je detaljna analiza pomenutih algoritama, a performanse algoritma su upored⁻ene sa algoritmima koji su u širokoj upotrebi u oblasti CS. Kvalitet predstavljenih algoritama se ogleda i u preko 80 citata pomenutog rada [49] (Google Scholar). Takod⁻e, predstavljena je efikasna hardverska realizacija kod koje vrijeme izvršenja ne zavisi od broja dostupnih odbiraka, imajući u vidu predloženu paralelizaciju računski zahtjevnih djelova algoritma. Jedna interesantna tema koja nije obrad-ena u radu, a koje će biti fokus budućih istraživanja su i mogućnosti implementacija pomenutih algoritama na modernim računarskim grafičkim karticama koje posjeduju veliki broj jezgara, čime bi se već postojeći hardver (grafičke kartice) iskoristio za vrlo efikasnu implementaciju koja bi bila modifikacija i prilagod-enje, u radu predstavljene, hardverske realizacije. Doprinos rada se ogleda i u prezentovanoj proceduri za detekciju impulsnog šuma. Naime, razmatrani su slučajevi kada je šum prisutan u signalu takav da se mnogi odbirci zahvaćeni istim i dalje nalaze u nivou opsega signala, te samim tim ne mogu biti detektovani i uklonjeni standardnim robustnim tehnikama kakva je npr. L-statistika. Predložena procedura i njena iterativna varijanta su zasnovane na gradijentu mjere koji je korišćen u gradijentnim algoritmima. Dobijeni rezultati su takod⁻e publikovani u renomiranom med⁻unarodnom časopisu [58]. Zaključak Mogućnost primjene predstavljenih metoda je pokazana i na realnim primjerima, kakvi su fotografije sa digitalnih kamera, kao i medicinski signali: rendgen snimci i ECG signali. Za pomenute signale kao domeni rijetkosti korišćeni su 2D-DCT domen i hermitski domen, što potvrd⁻uje mogućnosti široke primjene GA, koja nije ograničena domenom rijetkosti. Jedna od tema budućih istraživanja biće i mogućnost pobolišanja GA za slučaj rekonstrukcije slike, imajući u vidu kvantizaciju (pikseli uzimaju konkretne vrijednosti iz skupa cijelih brojeva) prisutnu kod slika, kao i procedure za prorjed⁻ivanje signala kakve se obavljaju u standardnim algoritmima za kompresiju slike kakav je JPEG. Pored pomenutih rezultata vezanih za GA, u prvom poglavlju rada je dat doprinos u vidu izvod⁻enja egzaktne formule za grešku u rekonstruisanim koeficijentima nerijetkih signala pod pretpostavkom rijetkosti, pri čemu je uzet u obzir i šum u mjerenjima, tj. dostupnim odbircima. Izvedena teorijska formula je potvrd~ena statistički za razne varijacije parametara signala kao što su rijetkost, broj dostupnih odbiraka. Takod⁻e u svakoj realizaciji su korišćeni signali različitih amplituda i frekvencije, čime je objektivno provjerena dobijena formula. Kvalitet sprovedenih istraživanja i dobijeni rezultati u ovoj oblasti su potvrd-eni publikovanjem naučnog rada kod prestižnog izdavača za oblast elektrotehnike, IEEE [6]. Bibliografija [1]

D. L. Donoho, "Compressed sensing," Information Theory, IEEE Transactions on, vol. 52, no. 4, pp.	16
1289–1306, 2006. [2] R. G. Baraniuk, "Compressive sensing [lecture notes]," Signal Processing	
Magazine, IEEE, vol. 24, no. 4, pp. 118–121, 2007. [3]	

L.

 Stankovic, Digital signal processing: with selected topics: Adaptive systems, Time-frequency analysis,
 46

 Sparse signal processing. CreateSpace,

2015.

[4] S. Stanković, I. Orović, and E. Sejdić, Multimedia Signals and Systems. Springer, 2012.

[5] L. Stankovic, M. Daković, and T. Thayaparan, Time-frequency signal analysis with applications.Artech house, 2014. [6] L.

 Stanković, M. Daković, I. Stanković, and S. Vujović, "On the errors in randomly sampled nonsparse
 32

 signals reconstructed with a sparsity assumption,"
 IEEE Geoscience and Remote Sensing Letters, vol.

 14, no.
 12, pp. 2453–2456,

2017. [7] M. Daković, "Estimacija parametara signala dekompozicijom u vremensko-frekvencijskom domenu sa primjenom na radarske signale," in Ph.D. Thesis. University of Montenegro, Podgorica, 2005. [8] I. Djurović, Digitalna obrada slike. Elektrotehnički fakultet, Podgorica, 2006. [9]

E. J. Candes and J. K. Romberg, "Signal recovery from random projections," in Computational 35 Imaging III, vol. 5674. International Society for Optics and Photonics, 2005,

pp. 76-86. [10]

53

E. J. Candes and T. Tao, "Decoding by linear programming," IEEE transactions on information theory, vol. 7 51, no. 12, pp. 4203–4215, 2005. [11] E. J. Candès, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on information theory, vol. 52, no. 2, pp. 489–509, 2006.

[12] F. Ahmad and M. G. Amin, "Through-the-wall human motion indication using sparsity-driven change detection," 2013.[13]

Y.-S. Yoon and M. G. Amin, "Compressed sensing technique for high-resolution radar imaging," in SPIE Defense and Security Symposium. International Society for Optics and Photonics, 2008, pp. 69 681A-69 681A.

[14] M. A. Figueiredo, R. D. Nowak, and S. J. Wright, "Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems," **Selected Topics in Signal Processing**, IEEE Journal of, vol. 1, no. 4, pp. 586–597, 2007. [15]

J. A. Tropp and S. J. Wright, "Computational methods for sparse solution of linear inverse problems," 34 Proceedings of the IEEE, vol. 98, no. 6, pp. 948–958, 2010.

[16] I. Daubechies, M. Defrise, and C. De Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," Communications on pure and applied mathematics, vol. 57, no. 11, pp. 1413–1457, 2004. [17] LJ. Stanković, S. Stanković, I. Orović, and

M. Amin, "Robust Time-Frequency Analysis based on the L-estimation and Compressive Sensing," 2013.

[18] S. Stanković, I. Orović, and M. Amin, "Compressed sensing based robust time-frequency

representation for signals in heavy-tailed noise," in Information Science, Signal Processing and their Applications (ISSPA),

2012 11th International Conference on. IEEE, 2012, pp. 605–610. [19]

55

22

F. Marvasti, A. Amini, F. Haddadi, M. Soltanolkotabi, B. Khalaj, A. Aldroubi, S. H	lolm, S. Sanei, and J.
Chambers, "A unified approach to sparse signal processing," arXiv preprint arXiv	:0902.1853, 2009.

[20]

D. L. Donoho, M. Elad, and V. N. Temlyakov,		"Stable recovery of sparse overcomplete representations	25	
in the presence of noise," Information Theory, IEEE Transactions on, vol. 52, no. 1, pp. 6–18, 2006.				

[21]

D. Angelosante, G. Giannakis, and E. Grossi,	"Compress	ed sensing of	time-varying signals,"	in Digital 38
Signal Processing, 2009 16th International Con	ference on.	IEEE, 2009,	pp. 1–8.	

[22] S. Vujović, "Rekonstrukcija nedostajućih odbiraka signala upotrebom mjera koncentracije," in M.S. Thesis. University of Montenegro, Podgorica, 2013. [23]

W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, and R. D. Nowak, "Toeplitz-structured compressed 14 sensing matrices," in 2007 IEEE/SP 14th Workshop on Statistical Signal Processing. IEEE, 2007, pp. 294–298.

[24]

R. Calderbank, S. Howard, and S. Jafarpour, "Construction of a large class of deterministic sensing	4
matrices that satisfy a statistical isometry property," IEEE journal of selected topics in signal processing,	
vol. 4, no. 2, pp. 358–374, 2010. [25] M. A.	

Davenport, "Random observations on random observations: Sparse signal acquisition and processing," Ph.D. dissertation, 2010. [26]

2003. [27] L.

Welch, "Lower bounds on the maximum cross correlation of signals (corresp.)," IEEE Transactions on 4 Information theory, vol. 20, no. 3, pp. 397–399, 1974.

[28] A. Miller, Subset selection in regression. CRC Press, 2002. [29]

P. Schniter, L. C. Potter, and J. Ziniel, "Fast bayesian matching pursuit," in 2008 Information Theory and Applications Workshop. IEEE, 2008, pp. 326–333.

[30]

Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, "Orthogonal matching pursuit: Recursive

62

41

function approximation with applications to wavelet decomposition," in Signals, Systems and Computers, 1993. 1993 Conference Record of The Twenty-Seventh Asilomar Conference on. IEEE, 1993, pp. 40–44. [31]

Beurling, "Sur les intégrales de fourier absolument convergentes et leur applicationa une transformation fonctionnelle," in Ninth Scandinavian Mathematical Congress, 1938, pp. 345–366. [33] B. F. Logan, "Properties of high-pass signals," Ph.D. dissertation, Columbia University, 1965.

L. Stanković, M. Daković, and S. Vujović, "Concentration measures with an adaptive algorithm for processing sparse signals," in 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA). IEEE, 2013,

pp. 425-430. [36]

R. Tibshirani,	"Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal 9
Statistical Societ	y: Series B (Statistical Methodology), vol. 73, no. 3, pp. 273-282, 2011.

[37]

E. Candes and J. Romberg, "I1-magic: Recovery of sparse signals via convex programming," URL: www. acm. caltech. edu/l1magic/downloads/l1magic. pdf, vol. 4, p. 14, 2005.

[38] S. Boyd, S.

P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge university press, 2004. [39]

S.

Vujović, A. Draganić, M. Lakičević Žarić, I. Orović, M. Daković, M. Beko, and S. Stanković, "Sparse 5 analyzer tool for biomedical signals," Sensors,

vol. 20, no. 9, p. 2602, 2020. [40] L.

Stankovic, S. Stankovic, and M. Amin, "Missing samples analysis in signals for applications to L-12estimation and compressive sensing,"Signal Processing, vol. 94, pp. 401–408, 2014.[41]E. J.Candès and M. B. Wakin, "An introduction to compressive sampling,"IEEE signal processing magazine, vol.25, no. 2, pp. 21–30,

2008. [42] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, "Simple and practical algorithm for sparse fourier transform,"

33

sparse	recovery,"	in Proceedings of the	twenty-first annual	ACM-SIAM symposium on Discrete Algorithms.
SIAM,	2010, pp.	1190–1197.		

[44] S.

Stanković, I. Orović, and L. Stanković, "An automated signal reconstruction method based on analysis 20 of compressive sensed signals in noisy environment," Signal Processing, vol. 104, pp. 43–50, 2014.

[45]

D. Needell and J. A. Tropp, "Cosamp: Iterative signal recovery from incomplete and inaccurate samples," 3 Applied and computational harmonic analysis, vol. 26, no. 3, pp. 301–321, 2009.

[46] Z. Z. St'ephane Mallat, "Matching pursuit with time-frequency dictionaries," in IEEE Transactions on signal processing. Citeseer, 1993. [47] S.

Ji, Y. Xue, and L. Carin, "Bayesian compressive sensing," IEEE Transactions on signal processing, vol. 3 56, no. 6, pp. 2346–2356, 2008.

[48]

L. Stankovic, I. Stankovic, and M. Dakovic, "Nonsparsity influence on the isar recovery from reduced 23 data [correspondence]," IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 6, pp. 3065–3070, 2016. [49] L. Stanković, M. Daković, and

S. Vujović, "Adaptive variable step algorithm for missing samples recovery in sparse signals," IET Signal Processing, vol. 8, no. 3, pp. 246–256, 2014.

[50]

Y. Wang and G. Qian,"Novel approach for insar sensors imaging via gradient-based algorithm for the sparsesignal reconstruction,"IEEE SensorsJournal,vol. 18, no. 6, pp. 2385–2394,15

2018. [51]

M. Daković, L. Stanković, and I. Orović, "Adaptive gradient based algorithm for complex sparse signal 15 reconstruction," in 2014 22nd Telecommunications Forum Telfor (TELFOR). IEEE, 2014, pp. 573–576.

[52]

J. Yoo, J. S	Shin, and P. Park,	"Variable step-siz	ze sign algorithm aga	ainst i	mpulsive n	oises,"	IET Signal	40	
Processing,	vol. 9, no. 6, pp.	506-510, 2015.	[53] N. Greeshma,	М.	Baburaj,	and			

S. N. George,	"Reconstruc	tion of cloud-contaminated satellite remo	e sen	sing images using kernel	56
pca-based image	modelling,"	Arabian Journal of Geosciences, vol. 9,	no.	3, p. 239, 2016.	

[54]

L. Stanković and M. Daković, "On a gradient-based algorithm for sparse signal reconstruction in the signal/measurements domain,"
 Mathematical Problems in Engineering, vol. 2016,

2016. [55]

[56]

I. Orović, V. Papić, C. Ioana, X. Li, and S. Stanković,				"Compressive sensing in signal processing: algorithms				s		
and transform doma	in formulations," Ma	thema	atical	Proble	ms in Engineering,	vol.	2016,	2016.	[57]	5
M. Brajović, I. Orov	vić, M. Daković, and S	. Stanl	ković,	"Gra	adient-based signal re	econst	ruction a	algorith	m in he	rmite
transform domain,"	Electronics letters,	vol.	52,	no.	1, pp. 41–43, 2016	[58] L. Stan	ković,	М.	
Daković,										

and S. Vujović, "Reconstruction of sparse signals in impulsive disturbance environments," Circuits, 9 Systems, and Signal Processing, vol. 36, no. 2, pp. 767–794, 2017.

[59] S. Vujović, M. Daković, and L. Stanković, "Comparison of the I1-magic and the gradient algorithm for sparse signals reconstruction,"

in 2014 22nd Telecommunications Forum Telfor (TELFOR). IEEE, 2014, pp.

577-580. [60] S.

Vujović, I. Stanković, M. Daković, and L. Stanković, "Comparison of a gradient-based and lasso (ista)39algorithm for sparse signal reconstruction," in 20165th Mediterranean Conference on EmbeddedComputing (MECO).IEEE, 2016, pp. 377–380.

[61] S.

Stankovic, S. Vujovic, I. Orovic, M. DakoviC, and	L.	StankoviC, "Combination of	65	

gradient based and single iteration reconstruction algorithms for sparse signals," in IEEE EUROCON 2017-17th International Conference on Smart Technologies. IEEE, 2017, pp. 292–296. [62] M. Brajovic, S. Vujovic, I. Orovic, and S. Stankovic, "Coefficient thresholding in the gradient reconstruction algorithm for signals sparse in the hermite transform basis." in APPIS, 2018, pp. 30–41. [63] M. Brajović, I. Orović, M. Daković, and S. Stanković, "On the parameterization of hermite transform with application to the compression of qrs complexes,"

Signal Processing, vol.	131,	pp.	113–119,	2017.	[64] S.	Stank	ović, L. Stanković, and I.	45
Orović, "Compressive sensing approach in the hermite transform domain," Mathematical Problems in								
Engineering, vol. 2015,								

2015. [65]

M. Brajović, I. Orović, M. Daković, and S. Stanković, "Compressive sensing of sparse signals in the hermite transform basis," IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 2, pp. 950–967,

2017. [66]

M. Brajović, S. Stanković,	and	I. Orović, "Analysis of noisy coefficients in the discrete hermite	58
transform domain with applic	ation	in signal denoising and sparse signal reconstruction," Signal	
Processing, vol. 150, p	op.	145–156, 2018.	

[67] S.

Vujović, M. Daković	ć, I. Orović, an	d S. Stanković,	"An architecture for hardware realization of	42
compressive sensing gradient algorithm," in 2015			4th Mediterranean Conference on Embedded	
Computing (MECO).	IEEE, 2015,	pp. 189–192.		

[68]

C. Chad, Z. Qin, X. Yingke, and H. Chengde, "Design of a high performance fft processor based on	19
fpga," in Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference,	
2005., vol. 2. IEEE, 2005, pp. 920–923.	

[69]

K. Piromsopa, C. Aporntewan, and P. Chongsatitvatana, "An fpga implementation of a fixed-point square root operation," in Proceedings of the International Symposium on Communications and Information Technology, vol. 14. Citeseer, 2001, p. 16.

[70] Y. Li and W. Chu, "Implementation of single precision floating point square root on fpgas,"

in Proceedings. The 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines 43 Cat. No. 97TB100186). IEEE, 1997, pp.

226–232. [71] I. Stanković, I. Orović, M. Daković, and S. Stanković, "Denoising of sparse images in impulsive disturbance environment," Multimedia Tools and Applications, vol. 77, no. 5, pp. 5885–5905, 2018. [72] I. Stanković, M. Brajović, M. Daković, C. Ioana, and L. Stanković, "Quantization in compressive sensing: A signal processing approach," IEEE Access, vol. 8, pp. 50 611–50 625, 2020. [73] "National library of medicine," https://www.nlm.nih.gov/research/visible/mri.html, accessed: 2021-01-25. [74] "Mit-bih ecg compression test database," https://www.physionet.org/content/cdb/1.0.0/, accessed: 2021-01-25. [75] I. Djurovic, L. Stankovic, and J. F. Bohme, "Robust L-estimation based forms of signal transforms and time-frequency representations," IEEE Transactions on Signal Processing, vol. 51, no. 7, pp. 1753–1761, 2003. [76] L. Stanković, S. Stanković, I. Orović, and M. G. Amin, "Robust time-frequency analysis based on the L-estimation and compressive sensing," IEEE Signal Processing Letters, vol. 20, no. 5, pp. 499–502, 2013. [77] R. E. Carrillo, K. E. Barner, and T. C. Aysal, "Robust sampling and reconstruction methods for sparse signals in the presence of impulsive noise," IEEE Journal of Selected Topics in Signal Processing, vol. 4, no. 2, pp. 392–408, 2010. [78] A. A. Roenko, V. V. Lukin, and I. Djurovic, "Two approaches to adaptation of sample myriad to characteristics of sq s distribution data," Signal Processing, vol. 90, no. 7, pp. 2113–2123, 2010. [79] L. Stanković, I. Orović, S. Stanković, and M. Amin, "Compressive sensing based separation of nonstationary and stationary signals overlapping in time-frequency," IEEE Transactions on Signal Processing, vol. 61, no. 18, pp. 4562–4572, 2013. [80] D. L. Donoho, "De-noising by soft-thresholding," Information Theory, IEEE Transactions on, vol. 41, no. 3, pp. 613–627, 1995. KRATKA BIOGRAFIJA AUTORA Stefan Vujović je rod⁻en 1990. godine u Sarajevu, BiH. Dobitnik je diplome "Luča", a bio je i d⁻ak generacije u osnovnoj školi. Učestvovao je i ostvario zapažene rezultate na regionalnim i republičkim takmičenjima iz matematike i fizike za učenike osnovnih škola, a učestvovao je i na saveznom takmičenju iz fizike. Diplomirao je 2012, a magistrirao 2013. godine, oboje u oblasti elektrotehnike (digitalne obrade signala) na Univerzitetu Crne Gore. U tri navrata je dobio nagradu za najbolje studente Elektrotehničkog fakulteta, kao i nagradu Univerziteta za najboljeg studenta Elektrotehničkog fakulteta. Nakon završetka magistarskih studija, zapošljava se kao saradnik i istraživač na Elektrotehničkom fakultetu. U naučno istraživačkom radu bavi se obradom signala i kompresivnim odabiranjem. Član je TFSA grupe na Elektrotehničkom fakultetu. Nagrade, priznanja i stipendije: • Nagrada Univerziteta Crne Gore za najboljeg studenta Elektrotehničkog fakulteta za prethodnu (2011) godinu. • Nagrada Elektrotehničkog fakulteta za odlične rezultate i srednju prosječnu ocjenu A za prethodnu godinu, u tri navrata 2009, 2010 i 2011 godine • Nagrada inženjerske komore Crne Gore za izuzetne rezultate tokom studija. Ovu nagradu dobija 5 najboljih studenata sa svih

tehničkih fakultata • Stipendija EPCG za 5 najboljih studenata Elektrotehničkog fakulteta • Dobitnik stipendije Ministarstva prosvjete Stefan je učestvovao u realizaciji brojnih naučno-istraživačkim projekata na elektrotehničkom fakultetu kao i na projektima Crnogorke akademije nauka i umjetnosti (CANU). Takod⁻e je i recezent u brojnim renomiranim časopisima iz oblasti elektrotehnike. IZJAVA O AUTORSTVU Potpisani/a: Broj indeksa: Stefan Vujović 5/2013 Izjavljujem da je doktorska disertacija pod naslovom: Analiza, implementacija i primjena gradijentnih algoritama za rekonstrukciju kompresivno odabranih signala – rezultat sopstvenog istraživačkog rada; – da predložena disertacija ni u cjelini ni u djelovima nije bila predložena za dobijanje bilo koje diplome prema studijskim programima drugih ustanova visokog obrazovanja; – da su rezultati korektno navedeni, i – da nijesam povrijedio autorska i druga prava intelektualne svojine koja pripadaju trećim licima. Podgorica, februar 2021. godine Potpis doktoranda: IZJAVA O ISTOVJETNOSTI ŠTAMPANE I ELEKTRONSKE VERZIJE DOKTORSKOG RADA Ime i prezime autora: Stefan Vujović Broj indeksa/upisa: 5/2013 Studijski program: Doktorske studije elektrotehnike Naslov rada: Analiza, implementacija i primjena gradijentnih algoritama za rekonstrukciju kompresivno odabranih signala Mentor: Prof. dr Miloš Daković Potpisani: Stefan Vujović Izjavljujem da je štampana verzija mog doktorskog rada istovjetna elektronskoj verziji koju sam predao za objavljivanje u Digitalni arhiv Univerziteta Crne Gore. Istovremeno izjavljujem da dozvoljavam objavljivanje mojih ličnih podataka u vezi sa dobijanjem akademskog naziva doktora nauka, odnosno zvanja doktora umjetnosti, kao što su ime i prezime, godina i mjesto rod⁻enja, naziv disertacije i datum odbrane rada. Podgorica, februar 2021. godine Potpis doktoranda: IZJAVA O KORIŠĆENJU Ovlašćujem Univerzitetsku biblioteku da u Digitalni arhiv Univerziteta Crne Gore pohrani moju doktorsku disertaciju pod naslovom: Analiza, implementacija i primjena gradijentnih algoritama za rekonstrukciju kompresivno odabranih signala koja je moje autorsko djelo. Disertaciju sa svim prilozima predao sam u elektronskom formatu pogodnom za trajno arhiviranje. Moju doktorsku disertaciju pohranjenu u Digitalni arhiv Univerziteta Crne Gore mogu da koriste svi koji poštuju odredbe sadržane u odabranom tipu licence Kreativne zajednice (Creative Commons) za koju sam se odlučio. 1. Autorstvo 2. Autorstvo – nekomercijalno 3. Autorstvo – nekomercijalno – bez prerade 4. Autorstvo – nekomercijalno – dijeliti pod istim uslovima 5. Autorstvo – bez prerade 6. Autorstvo – dijeliti pod istim uslovima Podgorica, februar 2021. godine Potpis doktoranda: 1. Autorstvo. Licenca sa najširim obimom prava korišćenja. Dozvoljavaju se prerade, umnožavanje, distribucija i javno saopštavanje djela, pod uslovom da se navede ime izvornog autora (onako kako je izvorni autor ili davalac licence odredio). Djelo se može koristiti i u komercijalne svrhe. 2. Autorstvo – nekomercijalno. Dozvoljavaju se prerade, umnožavanje, distribucija i javno saopštavanje djela, pod uslovom da se navede ime izvornog autora (onako kako je izvorni autor ili davalac licence odredio). Komercijalna upotreba djela nije dozvoljena. 3. Autorstvo – nekomercijalno – bez prerade. Licenca kojom se u najvećoj mjeri ograničavaju prava korišćenja djela. Dozvoljava se umnožavanje, distribucija i javno saopštavanje djela, pod uslovom da se navede ime izvornog autora (onako kako je izvorni autor ili davalac licence odredio). Djelo se ne može mijenjati, preoblikovati ili koristiti u drugom djelu. Komercijalna upotreba djela nije dozvoljena. 4. Autorstvo – nekomercijalno – dijeliti pod istim uslovima. Dozvoljava se umnožavanje, distribucija, javno saopštavanje i prerada djela, pod uslovom da se navede ime izvornog autora (onako kako je izvorni autor ili davalac licence odredio). Ukoliko se djelo mijenja, preoblikuje ili koristi u drugom djelu, prerada se mora distribuirati pod istom ili sličnom licencom. Djelo i prerade se ne mogu koristiti u komercijalne svrhe. 5. Autorstvo – bez prerade. Dozvoljava se umnožavanje, distribucija i javno saopštavanje djela, pod uslovom da se navede ime izvornog autora (onako kako je izvorni autor ili davalac licence odredio). Djelo se ne može mijenjati, preoblikovati ili koristiti u drugom djelu. Licenca dozvoljava komercijalnu upotrebu djela. 6.
16/02/2021

Similarity Report

Autorstvo – dijeliti pod istim uslovima. Dozvoljava se umnožavanje, distribucija i javno saopštavanje djela, pod uslovom da se navede ime izvornog autora (onako kako je izvorni autor ili davalac licence odredio). Ukoliko se djelo mijenja, preoblikuje ili koristi u drugom djelu, prerade se moraju distribuirati pod istom ili sličnom licencom. Ova licenca dozvoljava komercijalnu upotrebu djela i prerada. Slična je softverskim licencama, odnosno licencama otvorenog koda. Glava 1. Od analognih signala do kompresivnog odabiranja Glava 2. Analiza gradijentnih algoritama Glava 2. Analiza gradijentnih algoritama Glava Analiza gradijentnih algoritama Glava 2. Analiza gradijentnih algoritama Glava 3. Implementacija gradijentnih algoritama

Similarity Report

Glava 3. Implementacija gradijentnih algoritama Glava 3. Implementacija gradijentnih algoritama Glava 4. Primjene gradijentnih algoritama 100 100 Glava 4. Primjene gradijentnih algoritama Glava 4. Primjene gradijentnih algoritama 100 100 Glava 4. Primjene gradijentnih algoritama Glava 4. Primjene gradijentnih algoritama 100 100 Glava 4. Primjene gradijentnih algoritama Glava 4. Primjene gradijentnih algoritama 40 40 Glava 4. Primjene gradijentnih algoritama 150 150 Glava 4. Primjene gradijentnih algoritama Glava 4. Primjene grad

sources:	
1	275 words / 1% - Internet from 30-Oct-2019 12:00AM <u>export.arxiv.org</u>
2	82 words / < 1% match - Internet from 18-Mar-2019 12:00AM www.multimedia.ac.me
3	60 words / < 1% match - Internet amsdottorato.unibo.it
4	55 words / < 1% match - Internet from 06-Jul-2018 12:00AM <u>d-nb.info</u>
5	50 words / < 1% match - Internet from 16-Jul-2020 12:00AM www.tfsa.ac.me
6	48 words / < 1% match - Internet from 17-Jan-2020 12:00AM <u>mafiadoc.com</u>
7	40 words / < 1% match - Internet from 29-Jun-2012 12:00AM ipl.johnvillasenor.com
	39 words / < 1% match - Crossref

8

	Ljubiša Stanković, Miloš Daković, Stefan Vujović. "Reconstruction of Sparse Signals in Impulsive Disturbance Environments", Circuits, Systems, and Signal Processing, 2016
9	36 words / < 1% match - Internet from 10-Feb-2021 12:00AM www.hindawi.com
10	36 words / < 1% match - Internet from 21-Sep-2020 12:00AM www.springerprofessional.de
11	34 words / < 1% match - Internet downloads.hindawi.com
12	31 words / < 1% match - Internet from 18-Mar-2019 12:00AM www.multimedia.ac.me
13	30 words / < 1% match - Internet from 03-May-2012 12:00AM www.grahamkendall.net
14	30 words / < 1% match - Internet from 07-Jul-2020 12:00AM <u>tops.osa.org</u>
15	30 words / < 1% match - Crossref <u>Jiajia Rong, Yong Wang, Tao Han. "Iterative Optimization-Based ISAR Imaging With Sparse Aperture</u> and Its Application in Interferometric ISAR Imaging", IEEE Sensors Journal, 2019
15	30 words / < 1% match - Crossref Jiajia Rong, Yong Wang, Tao Han. "Iterative Optimization-Based ISAR Imaging With Sparse Aperture and Its Application in Interferometric ISAR Imaging", IEEE Sensors Journal, 2019 29 words / < 1% match - Internet from 26-Jul-2019 12:00AM hal-centralesupelec.archives-ouvertes.fr
15	30 words / < 1% match - Crossref Jiajia Rong, Yong Wang, Tao Han. "Iterative Optimization-Based ISAR Imaging With Sparse Aperture and Its Application in Interferometric ISAR Imaging", IEEE Sensors Journal, 2019 29 words / < 1% match - Internet from 26-Jul-2019 12:00AM hal-centralesupelec.archives-ouvertes.fr 28 words / < 1% match - Internet from 12-Apr-2018 12:00AM academic.hep.com.cn
15 16 17 18	30 words / < 1% match - Crossref
15 16 17 18 19	30 words / < 1% match - Crossref
15 16 17 18 19 20	30 words / < 1% match - Crossref

22	25 words / < 1% match - Internet from 28-Aug-2017 12:00AM waveopt-lab.uic.edu
23	24 words / < 1% match - Crossref <u>Miloš Brajović, Isidora Stanković, Miloš Daković, Cornel Ioana, Ljubiša Stanković. "Error in the</u> <u>Reconstruction of Nonsparse Images", Mathematical Problems in Engineering, 2018</u>
24	23 words / < 1% match - Internet from 19-Sep-2018 12:00AM <u>d-nb.info</u>
25	22 words / < 1% match - Internet from 29-Aug-2017 12:00AM <u>infoscience.epfl.ch</u>
26	22 words / < 1% match - Internet from 09-Jun-2017 12:00AM <u>documents.mx</u>
27	22 words / < 1% match - Internet <u>hdl.handle.net</u>
28	22 words / < 1% match - Internet from 24-Oct-2020 12:00AM www.ucg.ac.me
29	22 words / < 1% match - Crossref Ljubisa Stankovic, Milos Dakovic, Isidora Stankovic, Stefan Vujovic. "On the Errors in Randomly Sampled Nonsparse Signals Reconstructed With a Sparsity Assumption", IEEE Geoscience and Remote Sensing Letters, 2017
30	21 words / < 1% match - Internet from 20-Aug-2014 12:00AM <u>daspworkshop.org</u>
31	21 words / < 1% match - Crossref <u>Ivan Volaric, Victor Sucic, Gotz Bokelmann. "Sparse Time-Frequency Distribution Calculation with an</u> <u>Adaptive Thresholding Algorithm", 2019 11th International Symposium on Image and Signal</u> <u>Processing and Analysis (ISPA), 2019</u>
32	20 words / < 1% match - Internet from 12-Feb-2020 12:00AM www.tfsa.me
33	19 words / < 1% match - Internet from 23-May-2020 12:00AM <u>export.arxiv.org</u>
34	19 words / < 1% match - Internet from 18-Mar-2019 12:00AM sharif.edu

35	19 words / < 1% match - Internet from 10-Aug-2020 12:00AM <u>arxiv.org</u>
36	19 words / < 1% match - Crossref <u>Srdjan Stankovic, Stefan Vujovic, Irena Orovic, Milos DakoviC, Ljubisa StankoviC. "Combination of</u> <u>gradient based and single iteration reconstruction algorithms for sparse signals", IEEE EUROCON</u> <u>2017 -17th International Conference on Smart Technologies, 2017</u>
37	19 words / < 1% match - Crossref <u>L. Stankovic, M. Dakovic, T. Thayaparan, V. Popovic-Bugarin. "Signal Decomposition of Micro-Doppler</u> <u>Signatures", Institution of Engineering and Technology (IET), 2014</u>
38	19 words / < 1% match - Crossref Posted Content Hossein Sharifi Noghabi, Majid Mohammadi. "Robust Group Fused Lasso for Multisample CNV Detection under Uncertainty", Cold Spring Harbor Laboratory, 2015
39	19 words / < 1% match - Crossref <u>K. Botina, K. Corredor, S. Duarte, G.A. Perdomo, J. Dominguez, E. Delahoz. "Performance</u> <u>Benchmarking of Stochastic and Deterministic Representation Bases with Compressive Sensing in</u> <u>Computerized Tomography Images", 2020 IX International Congress of Mechatronics Engineering and</u> <u>Automation (CIIMA), 2020</u>
40	19 words / < 1% match - Crossref <u>Xiaoding Wang, Jun Han. "Affine Projection Algorithm by Employing Maximum Correntropy Criterion</u> for System Identification of Mixed Noise", IEEE Access, 2019
41	18 words / < 1% match - Internet from 07-May-2019 12:00AM research.sabanciuniv.edu
42	18 words / < 1% match - Internet from 10-Jun-2017 12:00AM <u>senat.ucg.ac.me</u>
43	18 words / < 1% match - Internet from 01-Nov-2009 12:00AM <u>deimos.eos.uoguelph.ca</u>
44	17 words / < 1% match - Internet from 25-Mar-2015 12:00AM <u>casopisi.junis.ni.ac.rs</u>
45	17 words / < 1% match - Internet from 25-Dec-2018 12:00AM downloads.hindawi.com
46	16 words / < 1% match - Internet from 05-Dec-2019 12:00AM <u>www.multimedia.ac.me</u>

16/02/2021

Similarity Report

47	16 words / < 1% match - Crossref <u>Isidora Stanković, Miloš Daković, Cornel Ioana. "Decomposition and Analysis of Signals Sparse in the</u> <u>Dual Polynomial Fourier Transform", Microprocessors and Microsystems, 2018</u>
48	15 words / < 1% match - Internet from 26-Oct-2010 12:00AM <u>viola.usc.edu</u>
49	15 words / < 1% match - Internet from 24-May-2016 12:00AM publications.icd.utt.fr
50	15 words / < 1% match - Internet from 28-Oct-2015 12:00AM <u>www.researchgate.net</u>
51	14 words / < 1% match - Internet from 09-Apr-2018 12:00AM <u>espace.library.uq.edu.au</u>
52	14 words / < 1% match - Internet from 29-May-2020 12:00AM fedora.ucg.ac.me
53	13 words / < 1% match - Internet from 26-Mar-2016 12:00AM <u>arxiv.org</u>
54	13 words / < 1% match - Internet from 21-Oct-2017 12:00AM tel.archives-ouvertes.fr
55	13 words / < 1% match - Internet from 22-Jan-2019 12:00AM www.tfsa.ac.me
56	13 words / < 1% match - Internet from 20-Aug-2020 12:00AM pastel.archives-ouvertes.fr
57	13 words / < 1% match - Internet from 20-Jul-2016 12:00AM <u>pt.scribd.com</u>
58	12 words / < 1% match - Internet from 05-Dec-2019 12:00AM www.multimedia.ac.me
59	12 words / < 1% match - Internet from 05-Dec-2019 12:00AM www.multimedia.ac.me
60	12 words / < 1% match - Internet from 24-May-2013 12:00AM www.cs.technion.ac.il

61	12 words / < 1% match - Internet from 13-Jul-2020 12:00AM <u>fedora.ucg.ac.me</u>
62	12 words / < 1% match - Internet from 01-Jun-2020 12:00AM <u>repozitorium.omikk.bme.hu</u>
63	12 words / < 1% match - Internet from 26-Aug-2018 12:00AM www.scribd.com
64	12 words / < 1% match - Crossref Hong Liu, Zhuo Fu, Xiaofei Li. "A two-layer probabilistic model based on time-delay compensation for binaural sound localization", 2013 IEEE International Conference on Robotics and Automation, 2013
65	11 words / < 1% match - Internet from 22-Jan-2019 12:00AM <u>www.tfsa.ac.me</u>
66	11 words / < 1% match - Internet from 03-Oct-2019 12:00AM <u>www.ideals.illinois.edu</u>
67	11 words / < 1% match - Internet from 22-Sep-2020 12:00AM <u>export.arxiv.org</u>
68	11 words / < 1% match - Internet from 01-Feb-2020 12:00AM <u>export.arxiv.org</u>
69	11 words / < 1% match - Internet from 06-Sep-2016 12:00AM <u>www.scribd.com</u>
70	11 words / < 1% match - Internet from 08-Nov-2005 12:00AM <u>iie.fing.edu.uy</u>
71	11 words / < 1% match - Internet from 23-Dec-2015 12:00AM <u>docslide.us</u>
72	11 words / < 1% match - Internet from 27-Nov-2020 12:00AM <u>doku.pub</u>
73	10 words / < 1% match - Internet from 15-May-2019 12:00AM <u>repository.ntu.edu.sg</u>
74	10 words / < 1% match - Internet from 11-Nov-2017 12:00AM hal.archives-ouvertes.fr

7510 words / < 1% match - Internet from 07-Jun-2020 12:00AM manualzz.com	75
7610 words / < 1% match - Internet from 11-Nov-2020 12:00AMlaurent.claessens-donadello.eu	76
7710 words / < 1% match - Internet from 22-Jan-2019 12:00AMwww.tfsa.ac.me	77
78 10 words / < 1% match - Internet from 01-Mar-2020 12:00AM <u>d-nb.info</u>	78
7910 words / < 1% match - Internet from 24-Dec-2020 12:00AMrepozitorij.fsb.unizg.hr	79
80 10 words / < 1% match - Internet from 21-Oct-2020 12:00AM fedora.ucg.ac.me	80
81 10 words / < 1% match - Internet from 25-Nov-2020 12:00AM idoc.pub	81
82 10 words / < 1% match - Internet from 11-Nov-2020 12:00AM <u>futur.upc.edu</u>	82
83 10 words / < 1% match - Internet from 16-Jan-2021 12:00AM fr.wikipedia.org	83
84 10 words / < 1% match - Internet from 01-May-2019 12:00AM ejurnal.itenas.ac.id	84
85 10 words / < 1% match - Internet from 17-Jul-2020 12:00AM <u>dspace.spbu.ru</u>	85
86 10 words / < 1% match - Internet from 28-Nov-2016 12:00AM skemman.is	86
87 10 words / < 1% match - Crossref <u>D. Sundararajan. "Fourier Analysis—A Signal Processing Approach", Springer Science and Business</u> <u>Media LLC, 2018</u>	87

88

10 words / < 1% match - Crossref

16/02/2021

Similarity Report

<u>Stankovic, Ljubisa, Srdjan Stankovic, and Moeness Amin. "Missing samples analysis in signals for applications to L-estimation and compressive sensing", Signal Processing, 2014.</u>

89

10 words / < 1% match - Crossref <u>"Multivariate Statistics", Springer Science and Business Media LLC, 2007</u>